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I
ABSTRACT

The evaluation of the reliability, stability, and performance of fault

tolerant control systems (FTCS) is considered. New sufficient conditions

for stochastic stability of FTCS with standard Markovian component failure

behavior and Markovian failure detection decision behavior are derived. By

specializing these results to the class of linear time-invariant (LTI) FTCS

with linear state feedback control la-s that are reconfigured by switching

the feedback gain matrix according to the identified failure configuration,

the stability results are strengthened to necessary and sufficient

conditions for stochastic stability of a special type (exponential in mean

square) that implies a very strong sense of stability (a.s. in probability).

An approximate feedback control design technique for LTI FTCS is then

proposed and demonstrated on a simple numejical case.

I In addition, previous results on semi-Markov analysis of FTCS reliability

are used to derive a numerical method for establishing approximately optimal

failure detection test thresholds for sequential failure detection tests.

This method, though approximate, is shown to yield thresholds that provide a

considerable increase in system reliability relative to those provided by a

method based on a rigorously derived reliability approximation for one

numerical case.
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1 1. INTRODUCTION

3 1.1 Motiation and Discuosion of Problem

The evaluation of the reliability, performance, and stability properties of

fault tolerant control systems (FTCS) is problematic due to several

characteristics cf these systems. Fundamentally, the behavior of FTCSs is

probabilistic in nature. The random nature of the behavior stems from the

random occurrence of failures, the random noise disturbing the system and

corrupting its outputs, and the interaction of the failure detection -,d

isolation (FDI) logic with the noise-corrupted outputs. This means that any

evaluation technique must account for all of the random behavior to which

FTCS are subject.

Most of tne evaluation m, thods that have found success for FTCS are based

upon Markov modeling. The failure behavior of the components comprising

most FTCS is usually well-modeled by a Markov jump process, and if the

correlations between component failure events (if any) are known, then the

system failure configuration can be modeled by a finite-state Markov jump

process. The random noise corrupting the measurements is often modeled as

white (i.e. as if uncorrelated in time). If the FDI tests used by the

system are instantaneous, such as the standard threshold tests or

instantaneous parity equation tests based on analytic redundancy, then the

FDI decision behavior is also Markovian when conditioned on the failure

configuration. This situation lends itself to a Markov jump process model

of the FTCS behavior from which the system reliability and performance can

3 be derived, provided the interaction between the FDI logic and the system

configuration is properly accounted for [1]. The problem for the FTCS

evaluator is then one of solving for the transient behavior of the resulting

Markov model. The transient solution is often complicated by the large

number of states possessed by typical FTCS models and by large ranges in the

3 transition rates of the model due to the often extremely slow rate of

component failures relative to the rate at which FDI decisions are made.

The Markov jump process modeling technique breaks down when the FDI tests

involve memory. Any sequential FDI test (such as Wald's sequential

probability ratio test, the Shiryaev test, or any likelihood ratio test

based upon a history of measurements) and any test involving dynamic

3 filtering of the measurement data (such as the detection filter, the

dedicated observer approach, and the unknown input filter) no longer behaves

I 3
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in a Markovian fashion even if the noise corrupting the measurements in use

is white. In many of these cases, however, the FDI decision behavior can be

modeled by a finite state semi-Markov process conditioned on the failure

Ibehavior. When combined with the Markovian failure characterization, the
result is a semi-Markov model for the FTCS behavior that yields reliability

aLl performance information if the transient solution to the model can be

calculated [2].

Much of our previous work has dealt with the difficulty of solving for the

transient behavior of semi-M1arkov FTCS behavior models [3-8]. These

solution difficulties arise from the sources cited above (large number of

model states, wide range of transition rates) and also from the convolutions

necessary to evaluate the transient solution to semi-Markov models. The

work described in (3-8] was directed toward approximating the transient

solution by simpler forms obtained by exploiting the wide discrepancy that

typically exists between the failure rates of the components and the FDI

decision rates to decompose the semi-Markov model into aggregate classes.

The reader is referred to (3-8] for furuher details and results.

In the work reported here, we shift our attention slightly to the problem of

evaluating stability properties of FTCS and to determining thresholds f3r

sequential FDI tests that are commonly used in FTCS. The stability issue,

like the reliability and performance evaluation problem, is complicated by

the fact that FTCS are fundamentally stochastic systems. Therefore,

stability for FTCS must be defined in a stochastic sense and the theory of

stochastic stability must be employed to derive results. The threshold

determination issue, which we have addressed for a special type of system

[9-101, is related more closely to our reliability evaluation work because

the reliability is often the measure by which the FDI threshold selection is

judged.

*1.2 Previous and Related Work

As discussed above, our own previous work and that of others (reported in

(3-8] and the references thereof) has focused primarily on the reliability

evaluation problem for FTCS. We have examined the threshold determination

problem before [9-101, but only for the case of instantaneous FDI tests. To

our knowledge, the threshold determination procedure for sequential FDI

tests discussed later in this report is unprecedented in the literature on

FTCS.

!4
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The stability question for FTCS has been studied in recent years by several

other researchers. Our work is closely related to that of Mariton, reported

in [11], who examined the stochastic stability of FTCS under the assumption

that the FDI decisions could be delayed by a random time but were always

correct. Our results also are related slightly to those reported by Ji and

Chizeck in [12] foi the special case of FTCS called the jump linear

quadratic regulator (JLQR) problem with the assumption that the FDI

decisions are always correct and delayed by no more than one time step. In

fact, our results are generalizations of the results of both of these

references, as we shall show.

1.3 Outline of Report

The remainder of this report is laid out as follows. The next section

presents a detailed summary of our research findings. These results are

presented in the form of manuscripts included as subsections of the next

section, each preceded by a brief introduction to its contents. Section 3

summarizes the major findings reported in Section 2. The personnel involved

in the project are listed in Section 4. Section 5 lists the publications

and presentations that resulted from this work and from the previous AFOSR-

supported work that appeared during the project period. Finally, the

:eferences are listed in Section 6.
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I 2. PROGRESS SUMMARY

In this section, we present a detailed summary of the technical work

accomplished under the grant. Because they concisely summarize our results

and relate our work to the work of other researchers, we rely almost

entirely in this section on the manuscripts of three papers written under

the grant and submitted for publication. (See Section 5 on papers and

presentations.) To place these manuscripts in perspective, each is preceded

by a brief description of its contents and its relationship to the other

work accomplished under the grant.

2.1 Determination of Approximately Optimal Sequential Test Thresholds

This work most closely follows from the work on reliability analysis that we

accomplished under previous grants [3-8]. Basically, the assumption is made

that a semi-Markov odel has been constructed that describes the behavior of

a FTCS including random failures and FDI decision delays and errors. If

this model is _o be used to determine the Lest thresholds that minimize the

system unreliability at some fixed duration, then ordinarily a numerical

optimization scheme like a gradient approach must be used. Such schemes

require many evaluations of the model, each of which is very time-consuming.

In this manuscript, we suggest a simpler method for determining the

thresholds that requires the evaluation only of a few of the transition

probability mass functions in the semi-Markov model instead of the entire

I nrlel behavior. As we demonstrate for one numerical case, the resulting

thresholds can be better in terms of the system reliability that results

from their use than thresholds determined by other means.

I
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1 SELECTING THRESHOLDS FOR SEQUENTIAL FAULT DETECTION TESTS

I R. Srichander

Center for Artificial Intelligence and Robotics, Bangalore, India

Bruce K. Walker

Health Monitoring Technology Center, Department of Aerospace Engineering and
Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio, USA

Abstract. Many redundancy management (RM) algorithms use sequential tests

for detecting and identifying component failures because the sequential

processing of noisy data samples often results in significant decreases in

the probabilities of false detection and of missed detection relative to

single sample tests. However, this improvement in the error probabilities

cores at the cost of a larger delay in detecting or identifying a failure.

T Fhe error probabilities and delay statistics characterize the performance of

the sequential tests, and these performance properties play a crucial role

in determining the overall fault tolerant system performance. In this paper,

a simp l- technique to derive approximately optimum thresholds for sequential

failure detection tests is indicated where the performance of the iault

tolerant control system is the optimality criterion. The threshold selection

aJlud is ill iLraLed by a genei ic quddraj. r-durdant Fvq+em exampl

Keywords. Failure detection; reliability; redundancy: fault tolerant

systems; Markov processes; thresholds; sequential tests.
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3 I N])rlJC I ION

3 .. t.:ent yC.' - 1 (rct l cy of (r i t. i I I Component s has heen 1I(>I to) enhallio

ti eliability of contr ol systems for many applications. Exampls include,

I-( !Aft flighpt cntrol systems (Moerder and others, 1929; Howel I and

I 2i Is, 1983; 1.ooao and others, 19S5 spacecraft attitude contiol and

1,:r T 1a1 navi'i ttion systems (liar r ison and others, 1979; Ker, l' / I and

[!: le ar power- plant operating systems (Gal, Harrison, & Deyst, 1981 ). 'Fom

of these applications, hiph rel iability is of prime impor tar-ne, whl{il

I:. tirn motivates the use of active fault tolerant control s e .A

i[ve fault tolerant control system comprises a redundant set of bardware

>r -.:T,,ents ard a fully automated redundancy management (RM) algorithm to

.:;:-. giure the system in real Lime when component failures occur. One of

,funct ions of the hRM algorithm is the detection and identification of

".>res. This is usually, accomplished through the use of statistical

o- det it .,-on and identi f oation (F'Dl) tests combined with automatic
. , pm v as t h test outI ,)nes.

1 t, 1 labi 1 ity of a fault tolerant system is determined not only by the

it. es of its individual components but also by the FDI test

:i in' 1. instance, the re Iiability of a fault tolerant system

...... !sed o very reliable components but with a fault detection algori thm

t,. Lo f a I5 alarms can be unacceptably low. In such a case, false alarms

~m, . fr.quent that the effective redundancy level of the system is

,d. The mot ivation for the work reported here stems from the fact that

C',oerall fault tolerant system performance can be enhanced by improving

- performance of the FDI tests.I
Markovian models have been used in recent tines to assess the reliability

,i 1performance of fault. tolerant systems that use FDI tests of the single

Oniliple variety (Walker & Gal, 1979). Single sample FDI tests are tests that

S us e only data obtained at a single time instant, as opposed to tests that

u;- da ta obta iried over fixed or variable window of several time samples.

I lh eterminaior, of optimum thresholds for systems using single sample

t,-ts nas been examined by Harrison and others (1979). However, single

.;iample Pil test often have high probabilities of error, particularly in

norisy sijnal environments, that may lead to unacceptable system



I
olA ,_abil ities. To overcome this drawback, moving window and sequential test

ive been suggested for" FDI (Willsky, 1976). The improvement in the iri oi

bibiit.i s for these tests comes at the cost of a larger delay in

ct i n r i dent ifying a fai lu e.

iTer- rnatuc, sequential tests are not. memoryless. Therefore, Markov

Is are not applicable for evaluating the performance of systems tha t

Instead, semi-Markov models can be used to evaluate the performance

.i ititjes of- interest for a broad class of fault tolerant systems that u.<,.

p i ,ntial FDI tests (Walker, 1980). However, semi-Markov models are Uftlr:.

&t.,iationally intractable because of their large dimension, th( preseric(,

: nvo lution sums in the ca"cu!at*ns, and the long time periods th- ar

1:-ally of interest in fault tolerant systems applications. Tin
i m,< position of semi-Markov models to make practical the approximate

e-;iluation of the reliability of fault tolerant systems over long mission

.: has been described by Wereley (1987), Walker, Chu & Wereley (1988),

.richander & Walker (1989).

present work is aimed at deriving thresholds for sequential FDI tests

I h can inp-ove the overall performance and reliability of a fault

rant system. In cur-rent practice, these thresholds are often either

. at the -3(;- level of the noi:.- in the measurements or based on Monte

',!rlo simulation results. Simulation experiments are very expensive at the

.; i n phase. Time varying noise statistics are also difficult to account

.with these methods. Thresholds have also been chosen based upon single

performance probabilities (i.e. the probability that each test will

pI(vuce a false or missed alarm), but these methods do not take into

Cn)-osideration the structure of the FDI logic and hence do not capture the3 .,:flect of the thresholds on the overall system performance . In the case of

sequential tests, we are also often interested in minimizing the average

s mple number (ASN) of the tests, which determines the delay in detecting

failures. The ASN is usually a function of the test threshold (Wald, 1947).

S Ir, this paper, an approximate method for determining optimal thresholds for

,uent. al FDI tests is presented and demonstrated oi a quadraplex systemI -ample that uses sequential tests for FDI. The method to generate optimal

failure detection thresholds is computationally inexpensive and will be3 sem to yield significant improvements in overall system reliability

* 9



I
relative to the standard 3o, thresholds.I
The rest of the paper is organized as follows: !- section 2, a semi-Markov

model for a generic example of a quadraplex system is briefly described.

Section 3 describes a method to derive optimum thresholds for s~quential FDI

tests baped on the first passage time and state duration statistics of a

semi-Markov model. Evaluation of the selected thresholds in terms of the

performance of the qu.draplex system and a discussion of the results are

presented in section 4.

I
A SEMI-MARKOV PERFORMANCE MODEL EXAMPLEI

The model that is used to calculate fault tolerant system performance

quantities depends upon the architecture of the RM algorithm that is

employed. Therefore, these models are system-specific, and it is not

possible to define a "generic" model structure. In this paper, a particular

quadraplex fault tolerant system architecture is discussed and analyzed.

Although a specific architecture is examined, the applications of such a

generic a-chitecture are many. The architecture could, for example,

represent redundant air data sensors in a flight control system. Note,

however, that the concepts that are applied later in the paper for

determining FDI test thresholds are applicable to any semi-Markov

* performance evaluation model where the behavior that is characterized by the

model is similar to the behavior of the example system described in this

section.

Quadraplex systems are quite common in high reliability environments because

under ' eal circumstances they are capable of "fail-op, fail-op, fail-safe"

performance. In other words, they can tolerate two failures with little or

no loss of performance. This section describes a particular quadraplex

sensor system architecture, and the framework for a semi-Markov performance

evaluation model for it is given. Note that the form of this model is rather

general provided the FDI decision logic is of a particular form. The tests

used for FDI are assumed to be a sequential probability ratio test (SPRT)

due to Wald (1947) and a one-sided SPRT (also known as a CUSUM procedure,

see Page (1954)), referred to in this paper and by Walker (1980) as a

sequential ratio detection test (SRDT).

*10
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Assumed FDI Architecture

We now proceed to describe the assumed FDI logic for the quadraplex

architecture we will examine. At the four-level stage when all four sensors

are operational, let us denote the measurement at time sample k of each

sensor by {m (k), i=1.2,3,4}. Two pairwise differences of these measurements

are used to produce a residual sequence for failure detection as follows:

I r (k) = m(k) - m1 1 2

ra(k) : m(k) - m (k)23 4

We assume that E{r (k)}=O under the conditions of no failure (hypothesis H 0

and that when a failure in one of the instruments is present (hypothesis

H ), the residual sequences have the following mean values:I

E{r (k}=±a, E{r (k)}=O if instrument 1 fails

E{r (k )}=a, E{r (k)}=O if instrument 2 fails1 2

E{r (k}=±a, E~r (k)}=O if instrument 3 failsI2 1

E{r (k)}=Ta, E{r (k)t=O if instrument 4 fails

where a>O is a constant. Under each of the hypotheses, we assume that the

variances of both residual sequences are a .

At the four-level stage, we will apply four SRDTs to the residual sequences

in order to detect failures and identify polarity information. The SRDTs

have the fori:

D
Declare a failure is present (and specify polarity) if S i(k)>T , (i=1,2,3,4)

I otherwise continue to the next sample.

The test statistic S (k) is given by:
S (k) = max{O, S (k-l)±r (k)Ta/2}

! I I

with S (O)=O (i=1,2,3,4) where 1=1 for i=1,2 and 1=2 for i=3,4 and the top
sign is used for one test and the bottom sign is used for the other. TD is

the detection threshold, which is to be determined by the designer. We refer

the reader to L!alker (1980) for more details on the form of the test.

I The logic for using the outcomes of these two tests is assumed to be as

I 11



I
follows. No failure is assumed to be present until at least one of the SRDTs

terminates with a threshold crossing. If two or more SRDTs arrive

simultaneously at a failure decision, the tests are reinitiated. Otherwise,

depending on which one of the SRDTs arrived at a failure decision, one of

two isolation options is triggered that uses two SPRTs for isolating the

failed component. For the SPRTs, two residual sequences are formed as:

q1(k) = m (k) - m3(k)

q2(k) m2(k) - m (k)

Each SPRT has the form:

Declare a failure if R (k)>T, (i=l,2) otherwise proceed to the next sample.
1 1

Here, T is the isolation threshold, which is determined by the designer,

and:

R (k) = R (k-i) ± q (k) a/2
i i

with R (k )=0 (i=1,2) where k is the time sample at which detection occurs,I D D

and I and the signs on the quantities depend upon which SRDT was triggered
(see Walker (1980)). If both SPRTs arrive at "no failure" decisions (H ),

0

the SRDTs for failure detection are reinitiated (i.e. the detection alarm is

rejected as false). If only one of the SPRTs arrives at a failure decision

I'
*(H 1), the corresponding instrument is isolated as failed.

When one of the instruments is isolated by the FDI logic as being failed,

the remaining three instruments are redesignated 1,2, and 3. Two residual

sequences {r (k)} and {r (k)} are again generated using pairwise differences1 2

of the observations from the instruments, in this case using instruments 1

and 2 as one pair and instruments 2 and 3 as the other. Three-level failure

detection logic using SRDTs and failure isolation logic using SPRTs are used

again.

When only two instruments remain operational, we assume that built in test

equipment (BITE) is used on the isolated instruments in order to retrieve

instruments that were isolated due to false decisions. The BITE tests are

assumed to have known proababilities of false alarm and missed alarm.

I
I
*I1



Semi-Markov ModelI
For a system like the one described above, a semi-Markov model can be

constructed to characterize the evolution of its configuration as failures

and FDI events occur (Walker, 1980; Wereley, 1987). These models consist of

a finite set of states that represent the various system configurations and

a complete statistical description of the transition behavior among these

states. For more details on developing semi-Markov reliability models, see

Walker (1980) or Wereley (1987).

One of the states in a semi-Markov evaluation model is always a system loss

state. A system loss results if there are unisolated failed instruments in

operation whose outputs, when used to generate the control, cause a mission

failure.

I The state transition diagram for a semi-Markov model of the quadraplex

sensor system described above is shown in Figs. 1 and 2. The semi-Markov

modeling technique gives rise to a 24-state model for our quadraplex

example, though in practice some of the states can be aggregated. The

definitions of some of the states in the 24-state semi-Markov evaluation

model include:

1 State 1. Four instruments working, no failures present, no detection alarms

by SRDTs present. (Designated 4/0/0.)

State 2. Four instruments working, no failures present, SRDT alarm has

occurred, SPRTs in operation. (Designated 4/0/D.)

State 3. Three instruments working, no failures present, one false

isolation, no detection alarms by SRDT present. (Designated 3/FI/O.)

State 4. Three instruments working, no failures present, one false

isolation, one SRDT alarm present, SPRTs in operation. (Designated

3/FI/O/D.)

U State 5. Two instruments working, two false isolations, BITE operating.

(Designated 2/2FI.)

!13



I
For all but three of the remaining states, the state designators are given

* below:

6. 4/F/O. 7. 4/F/D.

8. 4/F/P. 9. 4/F/WP.

10. 3/1/0. 11. 3/F/FI/O.

12. 3/F/FI/D. 13. 3/F/FI/P.

14. 3/F/FI/WP. 15. 3/I/O/D.

16. 2/I/FI. 17. 3/F/I/O.

18. 3/F/I/P. 19. 3/F/I/WP.

20. 3/F/I/D. 21. 2/21.

* The remaining three states all result in a system loss:

State 22. System loss due to two failures present among four working

instruments.

State 23. System loss due to two failed instruments present among three

working instruments.I
State 24. System loss due to one failed instrument present among two working

instruments.

Fig. 1 depicts the "fast" transitions in the model, i.e. those that are not

failure rate dependent. Fig. 2 shows the failure or c-dependent transitions,

where c is the failure rate per time step of the instruments and is assumed

to be much smaller than the FDI transition rates. The three system loss

states are indicated in the figures.

In developing the semi-Markov model for this system, the statistics of

central importance are the probability mass functions (pmf) of the decisive

sample number (DSN) for the various sequential tests. (The DSN is the number

of samples following test initiation until the test terminates with a

decision). In general, these pmf's are not known exactly and can only be

approximated numerically. One of the earliest numerical ways to approximate

them for the SPRT is described by Bhate (1959). This is based on the

derivation of upper and lower bounds on the pmf value at each value of the

DSN of the test. More recently, a method that lends itself to recursive

14



I
numerical solutions for these mass function3 using standard numerical

quadrature routines was proposed by Walker (1980). For this paper, all of

the DSN pmf's were evaluated using this method.

U
OPTIMUM THRESHOLD APPROXIMATION

The primary objective of any fault tolerant system is to maximize the

probability of accomplishing the mission. A suitable performance criterion

that reflects this objective is the minimization of the probability of

* occupying the system loss state after a given number of time samples.

Considerations of this nature in developing FDI test thresholds have been

examined in the case of single-sample FDI tests by formulating a Markov

model for generating this probability, as first discussed by Walker and Gai

(1979).

An interesting aspect of using the probability of system loss as the

* performance criterion is that the thresholds tend to be chosen such that the

FDI decisions are delayed as long as possible in order to keep the

likelihood of decision errors low. This is clearly reflected in the FDI

thresholds derived for the example considered by Walker and Gai (1979),

which are such that all the FDI decisions are delayed until the last segment

of the mission. Thus, the use of system loss probability as a cost function

takes into account the "coverage" probability, but reflects nothing about

the performance degradation suffered during the delays until decisions are

reached. Also, the presence of BITE to retrieve instruments falsely isolated

by the FDI logic after the second detected failure has a significant impact

on the coverage probabilities. Since BITE usually has relatively high

3 probabilities of decision errors, a cost function (such as the system loss

probability) that accounts for the actions of BITE in arriving at the

* thresholds for the sequential tests can result in degraded performance for

the system despite minimizing the system loss probability. This is because

the presence of BITE can result in very low threshold values for the

sequential tests, which in turn implies that unfailed instruments are

frequently isolated and then brought back into operation via BITE. Such

frequent switching among the system configurations may be undesirable from a

control point of view because it can lead to instability (Srichander, 1990).
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Another aspect of the threshold determination problem that must be

considered is the tractability of the optimization procedure. When Walker

and Gai (1979) considered single-sample FDI tests, the numerical calculation

of the time evolution of a Markovian model was feasible over the desired

mission times. Since the problem addressed here involves sequential tests,

repeated solution of the resulting semi-Markovian models over mission times

of interest is not feasible. Also, as pointed out earlier, the overall

system reliability alone may not reflect the true performance of the fault

tolerant system because it does not reflect the ill effects of decision

delays. This motivates us to examine other cost functions that better

reflect the system performance and yield computationally tractable

optimization problems for threshold determination. Among such cost functions

are those considered in the remainder of this section. They are based upon

examination of first passage time properties and duration statistics for

semi-Markov chains.

3 First Passage Times

A semi-Markov chain with N states is completely characterized by an embedded

transition probability matrix [p ]] and N2 conditional holding time pmfs

h (m) (Howard, 1971). The semi-Markov model can also be completely

characterized by defining the transition mass functions g. i(m) defined as,

I g *(m) = pI h (m ()

The transition mass functions g i(m) have the following property:
0O N

E g I(n) 1 (2)
n=1 j=1

Equation (2) implies that for fixed i, if we maximize (or minimize) the

cumulative sum of the transition mass function for a particular destination

state j, then the collective sum of the cumulative sums of the transition

mass functions for transitions from state i to all other j is minimized (or

maximized). In other words, we will not be able to maximize (or minimize)

any one of the transition mass functions independently of the others. This

property will be used frequently in deriving the approximate optimal

3 threshold determination method.

The characterization of the system behavior by the g I(m) allows us to
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generate any statistic of interest from the semi-Markov model. One such

statistic is the pmf f (n) for the time to first passage from state i to

state j. This is the probability that the first entrance to state j will

occur n time samplez after entering state i, and is given by,

N n

f (n) = g J(n) + E E g r(i) fr(n-m) (3)
r=1 m=1rJ

with initial condition f ij(O)=6 . The cumulative pmf that the first passage

from i to j will require n time samples or less is then given by,

n
F (n) = Z f (k)

k=l
n n N n

Eg (k)+ E E Eg(m) f (k-m) (4)iJ~ +  ir rJ

k=1 k=1 r=1 m=1

rtj

The first passage time statistics given by (3) or (4) are indicative of the

length of time required to make a transition from state i to state j for a

semi-Markov chain. A cost function based on these statistics is well suited

for our objective, because we would like to minimize the transition time

from certain degraded states to more desirable states in the system state

description. Thus, a cost function based on first passage times can be

representative of the performance degradation for the system during the

mission.

S We will now illustrate the use of first passage time statistics to establish

the thresholds for the SRDTs and SPRTs used in the example system described

I in the preceding section.

Let us consider State 6 in our model of the quadraplex system given in the

preceding section. This state represents a degraded mode of system

operation, namely a missed detection at the four-level. We would like to

transition out of this state to a more desirable state as quickly as

possible. Examining the other states in our model, we notice that State 7

represents the case where the SRDT has corrcctly detected the presence of a

failure. Therefore, we would like to minimize the time for first passage

Ifrom State 6 to State 7. This can be achieved by maximizing the first

passage time cumulative pmf for some fixed n for States 6 & 7, i.e.

n

Max F 67(n) = Max f 67(k)

k=1

Max E g 67(k) + E E E g6r(m) f (k-m) (5)

k=L k=1 r=1 m=1

r+7
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From Fig. 1, we see that the only way of making a transition to State 7 from

State 6 is by a direct transition, which corresponds to detection by the

appropriate SRDT of the previously undetected failure. Therefore, the second

term in brackets in equation (5) contributes only through the term involving

g 66(). Since the recursion in evaluating the convolution term starts with

f 67 (0)=O, and noting the relationship among the transition mass functions
given by (2), the cumulative pmf F 67(n) can be maximized by optimizing the

cost function,
n

J1 = Max g 67(k) (6)
Because the above cost function represents the probability of an SRDT

detection given the presence of one failure, it is characterized completely

by the SRDT threshold. Therefore, an unconstrained maximization of (6) would

result in an optimal SRDT threshold of zero, and an intolerable number of

false detections would result. This is unacceptable.I
A lower bound for the SRDT threshold can bp established by considering other

transitions that are influenced by the threshold that are undesirable. For

instance, consider transitions from State 1 to State 2 in the semi-Markov

model of the example system. This transition represents a false failure

decision by the SRDTs, therefore we would like to maximize the first passage

time for this transition. Stated differently, we would like to minimize the

cumulative pmf for first passage from State 1 to State 2. That is,

n

Min F (n) = Min E f 1(k)
12 k 12I k=1n n N n

=Min[ g12(W)+ E E Eg1r(m) fr2(k-m) (7)
k=1 k=l r=1 m=1

r#2

The only way of making a transition from state 1 to State 2 is by a direct

3 transition. Neglecting g 11() for similar reasons to those used in deriving

(6), (7) reduces to,
n

J Min g 12(k) (8)I2 k 12

k=1
An unconstrair-d minimization of (8) would result in an infinite magnitude

for the SRDT threshold. However, (6) and (8) represent cost functions for

conflicting objectives. In some sense then, the SRDT threshold can be

optimized by defining a performance measure that combines them, such as:

Min Y = Min [ g 1 - E g67(k) (9)
1k=1 k=1

I The time index n appearing in the cost function is arbitrary and can be
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selected by the designer. Typically, it should approximate the maximum

permissible delay in detecting failures of the mimimum bias magnitude a that

cannot be tolerated. It can also depend on the number of instruments in use.

I Proceeding along similar lines and using the dependence among the transition

mass functions defined by (2), we can show easily that when three

instruments are in use, the analogous "optimum" threshold for the SRDT can

be obtained by optimizing the cost function

Min Y 2 = Min [-g 3 4 (k) - E g17,20 (0)

I In our example system, the SPRTs are in operation once a detection decision

is made by one of '!, SRLTs. Since the SPRT is a binary hypothesis test, we

need to establish two thresholds for each SPRT. Let us consider first fixing

the lower threshold A for the SPRT, the crossing of which represents a no

* failure decision.

3 In Fig. 1, State 2 represents the presence of a false detection by one of

the SRDTs. In this case, we would like the SPRTs to arrive at no failure

decisions as quickly as possible so that a desirable transition from State 2

to State 1 occurs. Since we want to minimize the decision delay for this

desirable transition, we try to minimize the time for first passage from

State 2 to State 1. Again, taking into account the dependence among the

transition mass functions for exits from a given state (equation (2)), the

If first passage time from State 2 to State 1 can be minimized by optimizing

the cost function,

n
J3 = Max g 21(k) (11)

k=1

Assuming that the upper threshold B is fixed, (11) can be maximized by

raising the lower threshold A. As before, optimization of the cost function

(11) would lead to a lower SPRT threshold that produced an unacceptable rate

of incorrect no failure decisions. To avoid this, an upper bound for A is

obtaincd by considering transitions from State 7 to State 6 at the

four-level stage. This transition occurs when the SPRTs fail to isolate a

faulty instrument. In order to minimize the likelihood of this decision

error, we minimize the cumulative pmf for the first passage time from State

7 to State 6, the general form of which is given by (4). This can be

3 achieved by optimizing:
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J = Min g (k) (12
4 76

K=1

The conflicting objectives defined by (II) and (12) can be combined into a

single cost function

Min K 3 = Min 76(k) - J g21(k (13)
k=1 k-I

Minimization of the cost function (13) for a fixed value of B will give the

optimum lower threshold A for the SPRTs.

I Proceeding in an analogous manner, the optimal SPRT upper threshold B at the

four-level stage can be derived by optimizing a cost function

Min Y4 = Min (k) - g7,10 (k) (14)

k=1 k=1

Again, the index n is to be picked by the designer depending on the maximum

permissible delay for the minimum intolerable failure bias before an

instrument must be isolated.

I Duration

The motivation behind selecting optimal thresholds by the methods described

above is to minimize the time spent in degraded modes of system operation

while maximizing the time spent in healthy states. Here, healthy states

imply all unfailed components are in use with no detection decisions by the

sequential tests. By examining the duration statistics for each state, we

will show in this section that the optimization of the cost functions

defined above will in fact achieve these objectives.

Duration of a state is defined as the length of time a state is occupied

I following its entrance until a transition occurs to some state other than

itself. The pmf for the duration in state i is given by,
N n

d (n) = g (n) + g in) d i(n-m) (15)
]=1 m =1

with the initial conditions d (O)=O. The cumulative pmf for the duration in

a state (i.e. the probability that the duration is less than or equal to n

3samples) is given by,
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n

D (n) E d (k)
k=1

n N n n
E E g i J(n) + E E gi (m) d (n-m) (16)

k=1 j=I kl m=1j~i

To minimize the probability that the duration exceeds n samples in a state

i, we have to maximize the cumulative pmf D (n) given by (16), and vice

versa. Further, we would like to achieve this by optimizing the threshold

for the sequential test. This in turn implies that the optimization has to

I be restricted to those transitions which depend explicitly on the test

threshold being optimized.I
Consider State 6 in the evaluation model of the example system. This

represents a degraded state due to the presence of an undetected failure.

Hence, we would like to minimize the duration in this state by selecting thf,

threshold for the SRDT. Since the transition mass function g 67(n) is an

explicit function of the SRDT threshold, we can minimize the probability

that the duration exceeds n samples in State 6 as a function of the SRDT

I threshold by defining the cost function as:
n

J5 = Min g 67(k) (17)
k=1

The constraint on (17) is the requirement to keep false alarms by the SRITs

low, which in turn implies the probability that the duration of State I

I exceeds n should be maximized. Combination of these two conflicting

objectives leads to a cost function identiudl to (9).I
We know that first passage time is a measure of the time needed to reach a

given state from another state, while duration measures the time needed to

leave a given ![tate. We infer from this section that optimization of the

performance measures defined earlier minimizes the duration in the degraded

system states, while first passage time considerations guarantee that this

is achieved through desirable transitions in the model. In other words, the

selected thresholds guarantee quick failure detection and isolation while at

the same time reducing to the greatest extent possible the number of false

alarms.
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NUMERICAL RESULTS

The optimum threshold determination technique described above was applied to

the quadraplex redundant sensor system with the FDI logic structure

discussed previously. It is assumed for the calculations that the FDI logic

operates at a rate of 1 Hz and that the failure rate per time step of each

instrument is c=5x10 -7 (which corresponds to a mean time to failure of 556

hours). An upper limit of 25 secs for the SRDTs to detect the minimum

intolerable failure bias magnitude a is also assumed. Identical assumptions

were made for the SPRTs used to isolate the first and second failures. This

iesults in setting n=25 in the cost functions defined above.

In general, the cost functions developed above are functions of the

-omponent failure rate f, the minimum failure bias magnitude a, the variance
c of the residual sequence {r }, the assumed maximum decision delay time

index n, and the failure detection test thresholds. Assuming that all

joiometers other than the tect thresholds are fixed, the cost functions can

be optimized by a suitable choice of the test thresholds. Interestingly, the

:ost functions defined above are all convex in tne thresholds for this

example, hence they yield unique optimal thresholds. This convexity of the

cost functions cannot be assumed for all problems, but a convex hull can

always be defined because the cost functions always become monotonic as the

threshold approaches its limiting values.

I To illustrate the cost convexity for the example system, the cost functions

defined above for the selecting the SRDT and SPRT upper thresholds are

plotted as functions of the test thresholds in Figs. 3 and 4, respectively.

A relatively simple golden section search can be used to find the optimum

thresholds in this case. For the SPRT, since two thresholds must be

determined, a few iterations are required to arrive at the optimal

thresholds A and B after an initial guess is made for A and B. In all

rasps, the iterations converged to two decimal place accuracy in about 25-30

secs of CPU time on a VAX 6240.

'Fable I shows the cost function values and optim.um threshold for the SRDT at

the 4-level stage as a function of the minimum failuie bias a, the noise

level o- and the maximum allowable detection time n. Also tabulated are the

average time to detect failures (ATDV) by the SRDTs for the cases examined.
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The ATDF is calculated from,

ATDF = M 0 k g67(k) (18)

k=1 k=g

Since the g ik) that appears in (18) has negligible probability mass for

large k, an upper limit of m=100 was sufficient to calculate the ATDF for

the example considered here.I
Many interesting conclusions can be drawn from the SRDT results. Note that

3 as the minimum failure bias level to be detected increases fcr a fixed noise

level a,, the cost function value approaches the limiting value of one. If,

on the other hand, the failure bias a decreases for fixed c, then the

optimum cost function value drops considerably below one. In fact, the cost

function value can be regarded as a figure of merit for the FDI performance.

A value considerably lower than one for this implies that the FDI scheme is

prone to false alarms.

The ATDF is also a useful performance measure for the test designer. It

indicates the average time delay in detecting a failure by the SRDTs for the

chosen maximum delay time index n. We notice that it approaches the upper

limit n=25 as the figure of merit value decreases.

If the maximum delay time index n is increased from 25 to 50 for identical

values of a and a-, the SRDT figure of merit improves but at the cost of

increased ATDF. This implies that the FDI scheme can take more time to

3 arrive at failure decisions, the net effect of which is increased threshold

levels that reduce the number of false decisions. Note the very high value

3 of the figure of merit in this case.

With the optimum cost function value and the ATDF at hand, the designer can

make the trade-off between false alarm rate and speed of detection in

de ;igning the SRDT. The authors' experience has been that a cost function

value below 0.9 usually results in an unacceptable false alarm rate (on the

order of 102 to 101 per test). Under these circumstances, the designer

must either increase the permissible time to detection or increase the

minimum failure bias level in order to arrive at an acceptable trade-off.I
The SPRT cost functions developed above exhibited identical characteristics

3 when applied to the example system and are omitted here for conciseness. We
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point out that at both the 3-level and the 4-level stage, the optimum SPRT

thresholds were found to be A*=-3.33 and B =4.49 for the case a=o=1.0 and

n=25. We note in passing that for the SPRT at the 4-level, the transition

mass function g 7O ( ' ) needs to be used in (18) to define the ATDF. The ATDF

using the threshold values given was 11.79.

I Particularly in the case of the SPRT thresholds just considered, we note

that the threshold level for deciding H is considerably higher than the 3o

level. For the above values of A and B , the per-test error probabilities

for the SPRT are: P =0.011 and P =0.035. When Walker and Gai (1979)
fa m

minimized the cost function PSL, their threshold produced a miss probability

of P =0.999 during most of the mission time. It is clear-' pointed out by
m

Walker and Gai (1979) that the cost function they considered includes no

mechanism for dealing with the elapsed time between the onset and detection

of a failure, which tends to result in thresholds that delay the FDI

decisions until the last subinterval of the mission.

* To examine the overall performance of the example fault tolerant system for

the thresholds generated here, the semi-Markov model was used to generate

the state probabilities for a mission length of just over an hour (actually,

4000 secs). From this, the probability of occupying the system loss state at

the end of the mission can be determined. Note that this evaluation is not

necessary to determine the thresholds, as it was for Walker and Gai (1979).

The results are presented in Table 2 under case (1) for various threshold

combinations when a=a-=l. In generating the results, it is assumed that the

pmfs are truncated after 100 time steps for computational tractability. It

3 is also assumed that the BITE which operates on isolated instruments has a

probability of making a false failure decision on an unfailed instrument per

test (P0 ) of 0.2 and a probability of a no failure decision on a failed

instrument per test (P) of 0.4. BITE is assumed to operate at a rate of 0.5

3 Hz.

We notice that P decreases as the threshold levels increase. This reflects
SL

the lack of penalization of an undetected failure that permits delayed

decisions in favor of decreased false alarm rates when P is used as the| SL
cost function. Since there is no mechanism to penalize such delayed

decisions, minimization of P alone will produce miss probabilities close

to one, as obtained by Walker and Gai (1979). We notice also that the system
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loss probability for the use of 3u' as the thresholds is very high relative

to PSL for the optimal thresholds.

To examine the FDI performance in terms of minimizing the duration in the

degraded states, the semi-Markov model described above was modified to

penalize delayed FDI decisions. This was done by adding to the model direct

transitions from all states involving a delayed decision to the system loss

state if the failure is undetected for 25 secs. Thus, a hard upper limit of

25 secs is enforced for the SRDT and SPRT to reach failure decisions in the

presence of a failure. The results for this modified system model are

tabulated as case (2) in Table 2. All numerical parameters were the same as

the previous case. Here, it is assumed that P =0.2 and P =0.3. For this0 1

case, we notice that as the threshold level increases, the system loss

probability P increases, which is contrary to the results in case (1)

examined above. We also notice that the system loss probability values are

substantially larger (by 2 orders of magnitude) than the previous results,

reflecting a heavy penalty for delayed FDI decisions.I
CONCLUDING REMARKS

From the results for the two models presented in Table 2, it is clear that a

cost function that uses P alone as the criterion for deriving optimum test5L

thresholds does not reflect the performance degradation suffered during the

mission due to delays in detecting failures. This is because penalization of

undetected failures is difficult to include in such cost functions. Also, it

took nearly 6 hours CPU time on a VAX 6240 to calculate PSL for each case

examined above. For longer mission lengths, or in cases where the FDI logic

operates at a faster rate, it is clearly nct feasible to repeatedly solve

the semi-Markov model numerically to examine the state probability behavior

3 as thresholds are varied. Instead, use of simpler cost functions based on a

few key transitions, as wac Jone here, yields approximately optimal

3 Ithresholds by relatively simple computations.
It can be easily verified that the ASN for the various cases examined in

Table 1 are widely different, even though the ATDFs are fairly close to each

other. Therefore, ASN information on the individual tests is not necessarily

3 Ji,aningful for selecting the thresholds.
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Notice also that the construction of the complete semi-Markov model for the

fault tolerant system is not necessary to construct the cost functions

considered here. The designer nueds to derive only the transition mass

functions appearing in the cost in order to derive the optimum thresholds.

I The technique presented in this paper solves the problem of optimum

threshold selection for sequential FDI tests in a computationally efficient

way. The cost functions to be optimized are relatively easy to develop and

do not require the complete construction of the semi-Markov system

reliability model. Accounting for time varying noise statistics is

relatively simple. Also, the overall fault tolerant system performance is

closely correlated with the figure of merit and ATDF for the selected

thresholds.
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No. n a a, BI 9; ATDF

1 25 0.8 1.0 6.32 0.8287 15.53

2 25 1.0 1.0 6.21 0.9344 12.77

3 25 1.2 1.0 6.18 0.9809 10.90

1 25 1.0 1.2 7.56 0.8517 14.99

5 25 1.0 0.8 4.94 0.9586 10.50

6 25 0.8 1.2 7.78 0.7093 18.22

7 50 1.0 1.0 8.59 0.9967 17.55

I
Table 2 Comparison of system loss probabilities

case B1 A B P
S1

1 3.0 -3.0 3.0 0.51982x0 -3

1 5.0 -3.67 4.83 0.11508x10-
4

1 6.2 -3.67 4.83 0.22663x10-
5

1 6.6 -3.67 4.83 0.14447x10-5

1 6.2 -3.33 4.49 0.24947x10-5

2 5.0 -3.67 4.83 0.67409x10-

2 6.2 -3.67 4.83 0.78355xi0 -3

2 6.6 -3.67 4.83 0.85756x10-3

2 6.2 -3.33 4.49 0.69485x10-3

I •designates the use of optimal thresholds for this case

I
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Captions for Figures

Fig. 1 FDI rate dependent state transition diagram for semi-Markov

i model.

Fig. 2 Failure rate dependent state transition diagram for semi--Markov

* model.

Fig. 3 SRDT threshold versus cost function value.

Fig. 4 SPRT upper threshold versus cost function value.
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2.2 Stochastic Stability Tests for FTCS

One of the key issues in FTCS analysis is the determination of the stability

of the system, particularly when the system uses feedback control that is
reconfigured in response to the FDI decisions Only recently have the

results of stochastic stability analysis been applied to FTCS. To date,

these results were restricted to FTCS for which the FDI decisions are always

correct, though possibly delayed by either one time sample or by a random

number of time samples [11,12] . Our stability results, which are reported

in the manuscript that follows, are not restricted to this case.

Furthermore, for the special case of LTI FTCS with linear state feedback

control, we derive necessary and sufficient conditions for a relatively

strong form of stochastic stability, whereas all of the conditions that have

been derived previously are only sufficient.
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I ABSTRACT

Active fault tolerant control systems are feedback control systems that

reconfigure the control law in real time based on the response from an

automatic failure detection and identification (FD) scheme. The dynamic

behavior of such systems is characterized by stochastic differential

equations because of the random nature of the failure events and the FDI

decisions. The stability analysis of these systems is addressed in this

paper using stochastic Lyapunov functions and supermartingale theorems. Both

exponential stability in the mean square and almost sure asymptotic

stability in probability are addressed. In particular, for linear systems

where the coefficients of the closed loop system dynamics are functions of

two random processes with Markovian transition characteristics (one

representing the random failures and the other representing the FDI decision

behavior), necessary and sufficient conditions for exponential stability in

the mean square are developed.
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1. INTRODUCTION

Fault tolerant control systems have been developed in order to achieve

high levels of reliability and performance in situations where the

controlled system can have potentially damaging effects on the environment

when failures of its components take place. For instance, in hazardous

chemical and nuclear plants, the consequences of an improper control action

following a contrul system component failure can be disastrous. In fighter

aircraft, the desire for increased maneuverability and performance has led

to relaxation of the static stability requirements. The failure of a flight

control element in such cases can result in an unstable aircraft if the

system design does not properly account for it. In the case of manned space

systems, safety is the greatest priority, which implies that even in the

3 presence of failed components the spacecraft must be abie to return safely

to its base. Other high performance automatic system applications where

reliability is of prime importance include air traffic control systems,

computerized banking systems and automatic medical monitoring systems.

A fault tolerant control system is designed tc retain some portion of

[ts control integrity in the event of a specifiec set of possible component

failures or large changes in the system operating conditions that resemble

these failures. Fault tolerant control system designs can be broadly

classified into two categories: passive designs and active designs. Each

* will be described below.

A passive fault tolerant control system can tolerate one or more

component failures while satisfactorily accomplishing its mission without

reconfiguring itself. Among sensing systems, for instance, the passive fault

tolerant design category includes those systems that incorporate a mid-value

measurement selection strategy (Potter and Suman 1986) or an averaging

strategy for generating the outputs of redundant sensors. Various degrees of

passive fault tolerance can also be achieved through such techniques as

robust control design (where "robust" refers here to insensitivity to the

effects of failures) or simultaneous actuatiun by parallel controllers

(Petkovski 1987, Vidyasagar and Vishwanadham 1985, Yedavalli 1985).

Active fault tolerance, on the other hand, involves automatically

detecting and identifying the failed components (Patton et al. 1989, Walker

1983, Willsky 1976, Willsky and Jones 1976) and then reconfiguring the

control law on-line in response to these decisions. Several examples of

I



I
active fault tolerant control system designs have appeared in the literature

recently, primarily for reconfigurable control of tactical aircraft

(Caglayan et al. 1987, Howell et al. 1983, Looze et a]. 1984, Looze et a].

1985, Moerder et al. 1989).

In this paper, we will be concerned with control systems that have

automatic failure monitoring capability in order to reorganize or

reconfigure the control law in real time in response to failure indications.

In otbor words, we will consider the behavior of active fault tolerant

control systems. In particular, we will consider tie closed loop stability

of active fault tolerant control systems when the random events that affect

th-se systems, namely component failures and failure detection decisions,

are taken into account.

3 The dynamic behavior of active fault tolerant control systems is

governed by stochastic differential equations because the failures and

failure detection decisions occur randomly. Stochastic differential

I cluations arise in a variety of problems of practical interest. In

structural engineering, for instance, the study of the dynamic stability of

* elastic structural and mechanical systems subjected to randomly fluctuating

loads generate these equations. in communications engineering, tracking

noise in a radar system leads to Ito differential equations describing the

dynamics of a moving target. For the control engineer, random perturbations

acting on the controlled process generate equations of the Ito type

describing the dynamic behavior of the system. The study of the

scattering phenomenon in random media and other chemical and biological

problems also generate governing equations with stochastic coefficients. Many

other examples of stocnastic differential equations in engineering systems can

* be cited.

In this paper, the stability analysis of active fault tolerant control

3 systems leads to the study of differential equations with randomly varying

parameters. Using techniques from the theory of stochastic differential

equations, the stability analysis of these systems will be presented here.

The synthesis of fault tolerant control laws for these systems is another

important issue. This will be discussed in a companion paper (Srichander and

Walker, 1990).

As pointed out above, the uynamical behavior of fault tolerant control

systems is governed by stochastic differential equations. Of primary

intctes' in t'is paper is the stability of the solutions to these stochastic

I
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differential equations. Several authors have examined the stability of3 solutions to general stochastic differential equations (Bertram and

Sarachick 1959, Bucy 1965, Kats and Krasovskii 1960, Khasminskii 1967,

Khasminskii 1980, Kozin 1969, Kozin 1972, Kushner 1967, Kushner 1971).

Existing stability results can be broadly characterized as applying to two

categories of stochastic differential equations. One category is stochastic

differential equations perturbed by Gaussian white noise (Ito differential

equations). The other is stochastic differential equations whose

coefficients vary randomly with Markovian characteristics. Of these

categories, the advances in the study of stability of solutions to Ito

differential equations have been more significant. This is true primarily

because the solutions to Ito differential equations are Markov diffusion

processes, which can be constructed using a Picard iteration technique to

solve the associated stochastic integral equation. For a rigorous analysis

of the existence, uniqueness, and behavior of the solutions to Ito

differential equations, we refer the reader to (Khasminskii 1962,

Khasminskii 1967, Khasminskii 1980, Nevelson 1966).

For differential equations with random Markovian coefficients,

significant results were obtained by Bucy (1965), Kats and Krasovskii

(1960), and Kushner (1967). In the work of Kats and Krasovskii (1960), the

stability of the moments of the solution process is investigated in detail

using a stochastic Lyapunov function approach. Kushner (1967, 1972) and Bucy

(1965) employ the supermartingale property of stochastic Lyapunov functions

to study the stability of the sample paths of the solutions. This is very

significant in practical problems of interest because, for a real system in

operation, we will observe only a single sample solution. Hence, the

stability results of the most practical importance are those that guarantee

the stability of every sample solution of the stochastic system, as opposed

* to results on the stability of the moments of the sample solutions.

The Etochasfic description of fault tolerant control system behavior

* studied in this paper differs from the stochastic systems investigated in

the literature cited above. For the systems considered here, the random

variations occurring in the system description are modeled as failures with

Markovian transition characteristics, and this leads to a stochastic

differential equation description of standard form. However, there is an

additional random process that induces random variations in the control law,

and therefore further affects the system description. This additional random
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process is the failure detection and identification (FDI) process, which

changes the system description through the control reconfiguration strategy.

For linear fault tolerant control systems with instantaneous detertion

of the transitions of the failure process by the FDI process assumed, the

minimization of a quadratic cost function leads to the jump linear quadratic

regulator (JLQR) formulation investigated by Wonham (1971) -nd Sworder

(1969). The instantaneous detection assumption is very restrictive, however,

and renders these results invalid for many fault tolerant systems of

practical interest.

More recently, the stability of active fault tolerant linear control

systems with possible detection delays was investigated by Mariton (1989)

under the assumption of identical state spaces for the failure process and

the FDI process. The probability of false alarms is also accounted for

in deriving these stability results. Mariton uses quadratic stochastic

Lyapunov function candidates to derive sufficient conditions for exponential

stability in the mean square of the closed loop system. However, in deriving

these results, Mariton (1989) assumes that a correct frilure diagnosis is

Ialways made following a failure subject only to a random time delay. This
assumption is too restrictive for many problems of practical interest where

*incorrect failure diagnosis is common due to the noisy signal environment.

Furthermore, because the conditions derived by Mariton (1989) are sufficient

and not necessary, they are inadequate to reach useful stability conclusions

when they are violated.

The JLQR problem has been reexamined recently by Ji and Chizeck (1990)

in the context of deriving stochastic controllability and stabilizability

conditions. In particular, necessary and sufficient conditions for

the stabilizability of the Markovian JLQR problem have been derived (though

these conditions are difficult to check in practice). As in most of the

analyses cited above, however, the restrictive assumption of instantaneous

failure detection is assumed in deriving these results.

The inadequacy of the existing results in characterizing the stability

of active fault tolerant control systems is the primary motivation behind

this paper. Specifically, we will investigate in this paper cases where

the FDI decision process is random with Markovian characteristics, such as

when memoryless FDI tests are used on measurement data corrupted by additive

white noise. In particular, necessary and sufficient conditions for the

stochastic stability of linear fault tolerant control systems under these
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conditions will be derived. These results are derived without the

restrictive assumption of identical state spaces for the FDI and failure

processes and without the restrictive assumption of instantaneous failure

detection, thereby making them applicable to many practical fault tolerant

control systems. The basic tools for the stability analysis will be

stochastic Lyapunov functions (Kushner 1967) and supermartingale theorems

(Doob 1956).

The paper is organized as follows: Section 2 discusses the mathematical

* formulation of the active fault tolerant control problem for continuous time

systems. A brief description of the assumptions regarding the FDI process

and the notation used in this paper are also given. In section 3, we will

present some useful results on supermartingales and define the notion of

stochastic stability. Conditions for the stochastic stability of the general

dynamic system defined in section 2 are derived in section 4. These results

are applied in section 5 to derive necessary and sufficient conditions for

the exponential stability in mean square of a linear stochastic dynamic

system of the form that fault tolerant control systems take when the failure

and FDI processes are Markovian. Section 5 also shows that the JLQR results

of (Wonham, 1971) follow as a special case of our results, and that almost

* sure asymptotic stability in probability is guaranteed when the conditions

for exponential stability in mean square are satisfied. Conclusions are then

given in section 6.

The results of this paper allow us to unambiguously determine the

stochastic stability of active fault tolerant systems with Markovian failure

and FDI characteristics, including some of the reconfigurable control

strategies that have been presented in the literature. Under certain

conditions, these reconfigurable control laws can lead to a closed loop

system that does not possess stochastic stability despite the fact that the

reconfiguration law always leads to a deterministically stable feedback

system. This will be illustrated in the companion paper (Srichander and

Walker, 1990) using a numerical example.

2. PROBLEM FORMULATION

In designing active fault tolerant control systems, we are interested in

monitoring the random variations that occur in the system description due to

random failures in order to change the control accordingly. In practice,

these random variations are not directly measurable but rather can only be
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U monitored by an FDI scheme, which is subject to errors and delays. Let r(t)

denote the state of the FDI process which monitors the state 7)(t) of the

random process describing the failures. The process r(t) is a finite state

stochastic process whose random behavior is conditioned on the failure

process state 71(t). We are interested in designing a control law to generate

the system input u(t), such that the control law is a function only of the

FDI process state r(t) and the system states x(t), and such that the

solution x=O for the dynamical system,

(t) = f(x(t),nq(t),u(x(t),r(t),t),t) (2.1)

I
is stable Vt!t . (We assume here without loss of generality that x=O is a0

solution to (2.1)). Note that we do not allow the control to be a function

of the actual failure process state q(t).

In the discussion to follow, we assume that n(t) and r(t) are separable

measurable Markov processes (Doob 1956) with finite state spaces Z={l,...,v}

and S={i ...... }, respectively. Thus, the system description depends upon

the true failure state n(t) while the input that is applied to the plant

depends upon the control law used in response to the indication by the FDI

process that the system state is r(t). In real systems, it is often true

that r(t)#n(t), and this will be the starting point for much of the analysis

that follows. The stability analysis in section 4 will pertain mostly to the

general nonlinear stochastic dynamical system described by (2.1). Later in

our stability analysis, we will consider a special case of the system (2.1)

whose state space description is of the linear form,

U x(t) = Ax(t) + B(a(t))u(x(t),r(t)) (2.2)

U where, u(x(t),r(t))=-K(r(t))x(t). Equation (2.2) will be referred to as the

linear plant model in this paper.

Note that both descriptions above restrict the effects of the random

variations due to failures to the input matrix B. This restriction is only

3 for convenience and the nature of the results remains the same when the

plant matrix is also subject to random variations.3 For notational simplicity, we will denote B(n~tfl=B when n(t)=kEZ and

u(x(t),r(t),t)=u when r(t)=ieS wherever appropriate. We also denote x(t)=x,
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r(t)=r, and n(t)=n wherever no confusion arises regarding the time

dependence of these quantities. We shall assume that the pairs (A,B k ) in

(2.2) are controllable for each kEZ. This assumption implies that the given

system has redundant control elements, which is a generic property of any

I fault tolerant system architecture.

The following notations will also be used in the sequel. l[xi will

denote the L2 norm, i.e. lixll=(x 2 
+ X2 +... + X 2 )1 /2 where x are thedenote~ 2h n2 nom i.[}[=x

components of xe~ n . When t=t0, the initial conditions will be denoted by

X(t )=xo, r(t )= ro, (t )= -0 . The inner product of two vectors will be

denoted by <.,.>. The notation o(At) will denote infinitesimal terms oflim o(At)
order strictly higher than one in At (i.e. At->o At) =0). A positive

definite matrix N will be denoted by N>O and a positive semi-definite matrix

by NaO. We will call a mxn matrix A bounded if there exists a positive

I constant (3 such that IIAxll (3iixJI VxED °, x10.

We further assume that f(x,n,u(x,r,t),t) in (2.1) is a

Borel-measurable function of (x,r,n) satisfying the following conditions.

1. There exists a constant L such that if x' and x'' are any two solutions

3 of (2.1) with lix'Ij, jjx'' I<R, then,

I if(x",-o,u(x,r,t),t)-f(x',mu(x,r,t),t)I :5 Lix'x'I (2.3)

I In (2.3), L is referred to as the global Lipschitz constant in x.

2. The function f(x,r,u(x,r,t),t) satisfies,

3 f(O,q,u(x,r,t),t) = 0, VrES, V-qEZ, and Vtat (2.4)

Under these conditions, the solution x(t)=x(t;x0 'r, t) of (2.1) is

almost surely unique and is an absolutely continuous stochastic process.

(This can be seen following arguments in Khasminskii (1980)). Note that the

linear system (2.2) is a special case of f(-) satisfying these conditions.

Further, it can be easily shown that the joint process {x,r,n} whose

realizations satisfy (2.1) is a (n+2)-dimensional Markov process. To see

this, let us consider the interval t 0sst. Then, x(t) is determined uniquely

by x(s) and by n(T) and r(T) for s:z:t. Under the assumption that n(t) and

r(t) are Markov processes, it follows that n(T) and r(T) for T2s are
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independent of n(T') and rr'), T'<s when conditioned on n7(s) and r(s).

Hence, {x(t),r(t),-q(t)} is independent of the random variables

{x(-r'),r(z'), (T')}, T'<s, when conditioned on {x(s),r(s),-a(s)}, which

establishes the Markov property of {x,r,n}.

In t>, a-I1yyisi thac Xllow, we ".:iii denote fix, nu(x, r, t),t)m

f(x,r,mt). We will now proceed to describe briefly the FDI process which

* monitors the random variations.

2.1 FDI Process

An FDI scheme is essentially an approach to a stochastic hypothesis

testing problem. This hypothesis testing can be implemented using single

sample tests, moving window tests or sequential tests. In single sample

tests, the information used for the FDI tests is gathered, processed, and

discarded at each time sample. In such cases, if the noise statistics on the

information are white, then the FDI processing is memoryless, i.e. the

future outcomes of the FDI tests are independent of the past and present

outcomes if n(t) and r(t) remain fixed. Under these conditions, Markov

3 models can be used to characterize the transition behavior of the state of

the FDI process conditioned on the failure status of the components.

Any hypothesis testing algorithm has error probabilities associated

with its decisions (Van Trees 1968). As a result, the FDI process state r(t)

(which is intended by design to follow the failure process state n) will

deviate from q(t) in the presence of false decisions and detection delays.

Let us assume now that n(t) is homogeneous. Since r(t) is a Markov process

when conditioned on n(t) for single sample FDI tests acting on signals with

additive white noise, the conditional probability p k (At) that the r(t)
ij

S process will jump from state i to state j, i,jES, in an infinitesimal time

interval of length At given that l=kEZ is,I
p1 PJ(At) = q At + o(At) (i~j) (2.5)

k

Here, q k represents the transition rate from i to j for the Markov process

r(t) conditioned on n=kEZ. Depending on the values of i,jeS and kEZ, various

interpretations, such as rate of false detection and isolation, raLe of

3 correct detection and isolation, false alarm recovery rate, etc., can be

k
given to q If
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For the failure process -q(t), the transition probability from state i

to state j, i,jeZ, in the infinitesimal interval At is given by,

p (At) = al At + o(At) (2.6)

where a are the transition rates of the homogeneous Markov process O(t).

In our case, the a are related directly to the component failure rates.

3. DEFINITIONS

In this section, we will summarize some of the results on

supermartingales that are relevant for our purposes. Also, we will present

some definitions on stochastic stability and introduce the weak

infinitesimal operator that is required in the analysis to follow. The

material in this section is mostly drawn from Doob (1956), Kushner (1967)

and Khasminskii (1980). In the discussion to follow, (t,c)= (t) will denote

a random process defined on the probability space (Q,U,P) which is

N -measurable for every tat . Here, N cU denotes a family of c-algebras of
t 0 t

events in 0 defined for every tat . Further, J3 will denote the c-algebra of0

Borel subsets on a closed interval [t ,t ]=Y.

To begin, we will formally define a Markov process and the strong

Markov property. The stochastic process (t,W)EP will be called a Markov

process if for AEB, cato, and tao

I
{(T+tw)EAIN} P{ (T+tW)EAi (. W)} (3.1)

with probability one. Here, N is the a-algebra of events generated by all

events of the form {f(u,W)EA}, usr and AE9B. If the above equality holds for

any Markov time (Kushner 1967) z, then C(t,w) will be called a strong Markov

process.

Let us again consider the stochastic process (t,w)=(t) which is

N -measurable Vtat . Let W(t) have finite expectation E{(t)}<o Vtat . ThenI t 0 0
the family { (t),N } is called a supermartingale if for s<t, the followingt

inequality holds with probability one:
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E{Et)IN} 5 g (s) (3. 2,

If in (3.2), M(t)>( ) 0 Vtt0, then g(t) is called a positive (nonnegative)I 11ap lm ~ngai !.

Theorem 3.1 (Doob 1956): If {(t),N t, tato, is a positive supermartingale,1 im

then the limit . = t-> E(t) almost surely exists and is finite. Further,

S E{} = M .

3 Theorem 3.2 (Doob 1956): If {J(t),N Y, tat0, is a non-negative
supermartingale, then for any A>O,

p sup (tA} E{(O)} (3.3)

I The motivation for considering supermartingales here is that stochastic

Lyapunov function candidates under certain conditions possess the

supermartingale property. Hence, supermartingale theorems can be used to our

advantage to study the stability of systems governed by stochastic

differential equations. In the discussion to follow, Nt will denote the

c-algebra generated by the time history up to time t by any random process

I under consideration.

We will now present some definitions that are required in the analysis

I to follow.

Definition 3.1: The solution x=O of system (2.1) is said to be almost surely

stable in probability if for any r ES, Q 0EZ, c>0 and p>O, there exists a

6( o,,p)>O such that if Jjx0jj<6(E,r,p) we have,

I SP Ix ( t)II it :5p (3.4)

I Defini'ion 3.2: The solution x=O of system (2.1) is said to be almost surely

asymptotically stable in prob~bilify if it is almost surely stable in

I probability and x(t)-O with probability one as t->o.

U



Definition 3.3: The solution x=O of system (2.1) is said to be exponentially

stable in the mean square if, for any r0ES, 71 0EZ and some 6(r,7 )>O there

exist two numbers a>O and b>O such that when Ilx0li6(ro,no), the following

inequality holds for all solutions of (2.1) Vtt 0 with initial condition xo:

IEflIX(t)12 :5 b x O 1 02 exp[-a(t-t0 (3.5)I

Definition 3.4: A bounded function f( ) is said to be in the domain of the

weak infinitesimal operator X of the random process (t) if the limit

3 lim E{f( (t+T))IM(t)} - f(M(t))
T-)o T - = Xf( ) = h( ) (3.6)

U exits pointwise in IR and satisfies,

lio E{h( (t+-))j(t)} = h( M(t)) (3.7)

If we generalize Definition 3.4 to time varying functions f(,t), then we

* have

Xf(Et) = a f( ,t) + h(,t) (3.8)

In general, Xf( ) is interpreted as the average time rate of change of the

process f( ) at time t given that (t)= .

Definition 3.5: Let g(t) be a right continuous strong Markov process and T a

random time with E{}<co. If the bounded function f( ) is in the domain of T

3 with Xf( )=h(g), then

I E{f(a(T))Jo }-f( o) = E{{h( (s))dsj (0)}
0

I
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E = f E{{f( Ws)dsI (O)) (3.9a

I

For time-varying functions, we have for every fixed s<T

I Ef( (r),T)jg(s)}-f(~(s),s E( a f( (s),s)+h( (s),s) dsl(s)}

I= E{| f(E(s),s)dsE(s)} (3.9b)Is
Since M(t) is a Markov process, there is no loss of generality when equation

(3.9b) is conditioned on the a-field N induced by the process i(s). We
S

shall assume this in our later analysis.

Fquation (3.9) is referred to as Dynkin's formula. In our analysis, all

Markov processes under consideration will be assumed to be strongly

Markovian (a valid assumption for the case of Markov processes studied as

models of physical processes) (Kushner 1967). We will no. proceed to d4erive

conditions for stochastic stability of the solution x=0 for (2.1).I
4. STOCHASTIC STABILITY

In this section, we will derive conditions for almost sure asymptotic

stability in probability and conditions for exponential stability in the

mean square (ESMS) of the solution x=O of the stochastic dynamical system

(2.1). The tools for stability analysis will be stochastic Lyapunov

functions and supermartingale theorems. In simple terms, a stochastic

Lyapunov function is a suitable function of the state of the random

differential equation that possesses the supermartingale property. From the

existence of such functions, the asymptotic and finite time properties of

the random trajectories of the stochastic differential equations can be

inferred. We will now define the notion of a stochastic Lyapunov function

candidate (Kats and Krasovskii 1960, Kushner 1967) and derive conditions for

3 it to possess the supermartingale property.

Let us consider the function V(x,r,mt) of the joint Markov process

{x,r,-}. For fixed m<w, let the following conditions hold:

(a) The function V(x,r,nt) is positive definite and continuous in x and t

I



in the open set 0 ={x(t):V(x,r, -,t)<m} VreS, V1QEZ and Vtt o, and

V(x,r,q,t)=O only if x=O. (The function V(x,r,rj,t) is said to be

positive definite if V(x,r,q,t)aW(x) VrES, VIEZ and Vtat o, where W(x) is

positive definite in the sense of Lyapunov)

3L The joitL MaiKuv piucess {x,r,n} is defined until at least some

T =inf{t:x(t)0 m } (or, Vt<3 if x(t)EO for t<w). If x(t)mEO Vt<oo, then
IT = ..

(c) The function V(x,r,mt) is in the domain of Y where Y is the weak

infinitesimal operator of the joint Markov process {x( t),r(T), W(t)},

where T =min(t,r ).t mn

A function V(x,r,1),t) that satisfies the above conditions will be said

to qualify as a stochastic Lyapunov function candidate for (2.1). We will

now prove the following lemma that establishes the supermartingale property3 of the function V(x(T ),r(T t ), -(Trt ).

3 Lemma 4.1: Let the random function V(x,r,Qt) satisfy assumptions (a)-(c)
above and let x 0 . Further, let YV(x,r,1n,t)50 in the open set 0 . Then

0 rn m

V(x(-r t),r(T t),(Tt ),Tt ) is a positive supermartingale.

Proof:

Applying Dynkin's formula we have,

N E{V(x(T ),r(Tt) (Ct)Tt)INS}V(x(s),r(s), (s),s )

t

E{ YV(x(r),r(T),-(T),r)dTIN } 0 (t0Ss< ) (4.1)
f S 0-<- t (4 1
S

In (4.1), N is the o-algebra generated by the process {x,r,-r} up to time s.

From (4.1), it follows that

I E{V(x(r t ),r(T t),Q(T t ),T t) }5V(x(s),r(s), n(s),s)< (s<r) (4.2)

I From the above equation and the positive definiteness of V(x,r,nt), we see

that V(x(T ),r( t),(Tt),Tt) is a positive supermartingale of the stopped

process {x(r t),r(Tt), (Tt)}.
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The conditions for stochastic stability of the solution x=O of the

system (2.1) will now be derived using the above result.

4.1 Conditions for Stability in Probability

The following theorem gives sufficient conditions for almost sure

stability in probability for the solution x=O of the qystem (2.1).

Theorem 4.1: Let us assume that conditions (a)-(c) given above hold.

Further, let YV(x,r,q,t)s0 in the open set 0 for rES and 7)EZ for (2.1).

Then the solution x=O of (2.1) is almost surely stable in probability.

IProof:
From Lemma 4.1, it follows that for x 0 V(x(T ),r(T t ), t) is a'0 m r t t t

positive supermartingale. Here, T =min(t,r ), where T is the first exit

time of x(t) from 0 . Consider the sequence of Markov times {T } as m->o.
m m

Then, it is easy to see that T defines a non-decreasing sequence of Markov

times such that T-oO with probability one as m- w. (The proof followsm3immediately from Theorem 3.2).
Further, from Theorem 3.1 the following limit almost surely exists and

3 is finite:

11M V(x (YT ) , r (Tt, (T ) = V < 0 (4.3)

t

3 It follows from (4.3) that V(x,r,n,t) is bounded Vtato. From this and for

X0 EO , it can be shown that V(x,r,n,t) is a positive supermartingale. Hence,0

from Theorem 3.2, we have for any c'>O,

3 P{SUp V(x r' t) '} V(xo ' r ° ' ° ' t°)PfOst ' V' N, r,71 (4.4)

3 Under the assumptions (a)-(c) on V(x,r,n,t), it follows that V(x,r,i,t)-*O as

x-)O. Hence, for a suitable choice of x oeO we have for any r ES, fo EZ, c'>O

3 and p>O,

I
I
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I
P{oSUP V(xr,rt)ac' : p (4.5)

Further, from the positive definiteness of V(x,r,nt), it follows that there

exists a function W(x) which is positive definite in the sensp of Lyapunov

* such that,

V(xr,i-,t) ? W(x) a alx MII (a>0) (4.6)

F-om the above equation, we can see easily that for c=(W'/a)>O,I
PISUP t< x ( t)De} p (4.7)

Hence, the proof is complete.

For the class of functions V(x,r,n,t)=V of the joint Markov process

{x,rvi satisfying the assumptions (a)-(c) above, the weak infinitesimal

operator Y of the process {x,r,n} for the system (2.1) at the point

{x,r=i,=k,t} is given by,

I
fV av av

= at + <f(x,i,k,t), a> + E q k [V(x,j,k,t)-V(x,i,k,t)]

j E 
S s

ji

+ a k [V(x,i,j,t)-V(x,i,k,t)] (4.8)
jEZ

j:k

Recall that in the above equation, a kJ' k,jEZ are the transition rates

of the n(t) process from state n=k to state n=j and q, kEZ and jES, are

the conditional transition rates of the FDI process state from r=i to r=j

(conditioned on n=k), which were defined in chapter 2. The first term in

(4.8) occurs due to incremental changes in the function V(x,r,n,t) when x, r

and 1, are constant. The second term in (4.8) is the increment in the

Lyapunov function due to changes in x in an infinitesimal interval when r

and n are fixed. The third term in (4.8) is the change in the stochastic

Lyapunov function in an infinitesimal interval when r(t) transitions from

state i to j, (i,jES) given that 17=kEZ. The last term in (4.8) is due to theI



incremental changes in the stochastic Lyapunov function when n(t)

transitions from the state k to j, (k,jEZ).

The following theorem gives sufficient conditions for almost sure

asymptotic stability in probability.

Theorem 4.2: Assume conditions (a)-(c) given above hold. Further, 'et

XV(x,r,n,t)=-K(x,r,71,t)<O in the open set 0 for (2.1) when rES and qEZ,

where K(x,r,rq,t)>O and continuous in x Vtto, and K(x,r,mt)=O only if x=O.

I Then the solution x=O of (2.1) is almost surely asymptotically stable in

probability.

Proof:

Under the conditions stated above, the solution x=O of (2.1) is almost

surely stable in probability (follows from Theorem 4.1). Also, we know that

V(x,r,iq,t) is a positive supermartingale. From the inequality (4.2) and the

positive definiteness of V(x,r,nt) (and hence non-negativity of the

conditional expectation), it follows that the left hand side of (4.1) is

bounded VT at . Now, let us denote the total time spent in the set
i t 0

{x:K(x,r,mt)Rtc>O}nO during the interval [t,T ) by T(t,c). Then, for r =C
m m m

it follows from (4.1) that

L>V(xo , -q 0o to)?E {  (s), r(s),-(s), s)dsINIJcE{T(t, c) (4.9)

t

The above equation implies that T(t,c)<c with probability one, and hence, as

t-)co in (4.9), T(t,c)-)O with probability one. In other words, K(x,r,O,t)-O cs

t-xa with probability one. Since K(x,r,n,t) is continuous in x Vtato, this

implies that x(t)- O as t-xo with probability one. This completes the proof.I
4.2 Conditions for Exponential Stability

In this section, we will derive necessary and sufficient conditions for

exponential stability in the mean square (in the sense of Definition 3.3)

for the general dynamic system given by (2.1). We point out that using these

conditions, it is difficult to verify the exponential stability in the mean

square of a general stochastic dynamic system of the form (2.1). However, if

we consider the linear plit rr.odel (2.2), then it is easy to verify whether

I5
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the system is stable in the sense of Definition 3.3 r not. We will examine

this particular case in section 5.

The following theorem gives a sufficient condition for exponential

stability in the mean square sense for the system (2.1).

Theorem 4.3: The solution x=O of the system (2.1) is exponentially stable in

the mean square for tat if there exists a function V(x,r,n,t) satisfying

the conditions (a)-(c) in section 4 such that,I
klUX(t)11 2  - V(x,r, 7t) k I2x(t)ll 2 (4. 10)

and XV(x,r, 7),t) s -kI3"x(t)11 2  (4.11)

for some positive constants k , k2 and k3

Proof:

It can be shown that the condition (4.11) is sufficient to ensure

V{x(-rt ),r(T t ), (T t ), t ) is a positive supermartingale. This implies that the

limit (4.3) exists and hence, V(x,r,n,t) has finite expectation Vtt o.

Applying Dynkin's formula to the bounded function V(x,r,qt) of the Markov

process {x,r,ra}, we have for any t<oo

E{V(x,r,T,t)Ix , r 0 0o} - V(xo, r 0 , 0t o )

= E{f XV(x,r,i-,t)dsIxo, r ,' } (4.12)
t
0

Taking expectations on both sides of equation (4.12) and differentiating

with respect to t, we obtain

d-E{V(x,r,),t)} = E{YV(x,r,ij,t)} (4.13)

Taking the expectations of the inequalities (4.10) and (4.11) and

substituting on the right hand side of (4.13), we have

5



dk3I dt-E{V(x,r,r),t)} - - {~~,,) 4 4

2

U Integrating both sides of (4.14) with respect to t, we obtain the inequality

E{V(x,r,7-,t)} : V(xo, ro, 0, O) exp - 2t (4.15)

Again, taking the expectation of (4.10) and substituting for E{V(x,r,mt)},

* we get the relation

E{Ijx(t) 112} 5 2 11Xo1
2  exp 3 tto (4.16)

The proof is complete.

A necessary condition for exponential stability in the mean square for

(2.1) is given by the following theorem:

Theorem 4.4: If the solution x=O of the system (2.1) is exponentially stable

in the mean square, then there exists a function V(x,r,nt) VrES and V 7EZ

that is continuous Vtat and satisfies conditions (4.10) and (4.11) for someo

positive constants k , k2 and 3

Proof:

Let us define the function V(x,r.),t) as

t+T

V(x,r,TI,t) = f E(llx(-)i12}dT (4.17)

We shall show that (4.17) satisfies all the conditions of the theorem for a

suitable choice of T. If the solution x=O of (2.1) is exponentially stable

in the mean square, it follows from Definition 3.3 that for some OC>0 and

/3>0,

E{Ix(T) 12 } f (IIx(t)112  exp(- P(T-t)), Tt (4. 18)

I54



Substituting for E{{Ix(T)112} from (4.18) into (4.17) we obtain

I V(x,r,-Q,t) -< allx(t) 112  ft+ exp - 3(T-t) dT (4.19)
-t

For a suitable choice of T>O, it follows that

V Nrt) k jxMt) j 2 >0) (4.20)

Further, every realization of a solution to (2.1) satisfies the

condition

E{Ilx(t)112} _ 11x 0112 exp(-2nLt) (4.21)

where L satisfies the Lipschitz condition defined in (2.3) and n is the

dimension of x. From this we obtain

UV(x,r,i),t) f t+T ElxT 1 d
t+T

t+T

= IIx(t)112 f exp(-2nL(T-t))dt (4.22)

From (4.22), the following inequality follows for any k such that

O<k <l-exp(-2nLT) 1

2nL

V(x,r,i,t) -a klHX(t)112  (4.23)

From (4.19) and (4.23), we see that the condition (4.10) is satisfied.

To show that V(x,r,n,t) is in the domain of X (and hence continuous)

and the relation (4.11) is satisfied, we proceed as follows. By the

definition of Y we have,

I
I15



I

I .V = m E{V(x(t+ ),r(t+6),T(t+6),t+6)jY} - V(x,r,-n,t) (4. 24)6->0

I
where Y=(x(t),r(t),n(t)). From (4.17) and (4.24) we have,

YV = 1M [Eft+T+(3 Efj()12)- ) - t+T E 1X( )T(.5

St+6t

From (4.25) and the inequality (4.18), we can show that

kV : im X[IXf )12 f.t+T+5 Y 3 (T t -.5 ->ot+6

I
-Ix(t)1e

2 fexp( f3 (T-t)dT] (4.26)lt
Evaluating the integrals in (4.26) and after further simplification, we

obtain the following inequality:

.v < ilx (t)ll2  1 11M e-13T  (!-e-P ") (1-e-136) 6( .

I
Taking limits in (4.27) it can be shown after some simplification thatI

XV(x,r,mt) -< a (e-I3T-l) I1x(t)112  (a, 3, T>O)I
-< -k 3 jx(t)l1

2  (4.28)

for any k 3?(l-exp(-3T))>O. Hence, the proof is complete.

I Before concluding this section, we mention that for linear dynamical

systems of the form (2.2) the following lemma is true:

Lemma 4.2: If the solution x=O of (2.2) is exponentially stable in the mean

I



square, then for any given quadratic positive definite function W(x,r,n,t)

in the variables x which is bounded and continuous Vt2t o, VrES and VnEZ,

there exists a quadratic positive definite function V(x,r,qt) in x that

satisfies conditions (4.10) and (4.11) and is such that

I V(x, r, n0, t)=-W(x, r, Q, t).

The proof for this lemma follows by selecting the function V(x,r,mt)

* as follows:

t+T

V(x,r,qt) = E{W(x,r, ,T)}dT (4.29)It

I It is easy to verify using arguments similar to those used for proving

Theorem 4.4 that for this choice of V(x,r,n,t), the conditions in Lemma 4.2

hold for the linear plant model (2.2).

We will now apply the results derived in this section to obtain

conditions that will enable us to verify the exponential stability in the

mean square of the linear plant model (2.2) under any linear time-invariant

state feedback control law dependent on the FDI process state.

5. NECESSARY AND SUFFICIENT CONDITIONS FOR EXPONENTIAL STABILITY

As pointed out earlier, the results in section 4.2 are difficult to

apply to check the exponential stability in the mean square of a general

dynamical system described by (2.1). In this section, conditions that allow

us to verify whether or not the linear plant model (2.2) under the control

law u(x,r)=K(r)x(t) has exponential stability in the mean square will be

derived. We will denote this control law by u =-K x when r=iES. For the

time-invariant case, we will assume without loss of generality that t o

The results in this section will be useful in synthesizing a fault tolerant

feedback control law that ensures the stochastic stability of the linear

plant model (2.2). This will bc discussed in the companion paper

(Srichander and Walker, 1990).I
Theorem 5.1: A necessary and sufficient condition for exponential stability

3 in the mean square of the linear plant model (2.2) under the control law

u=-K ix, iES, is that there exist steady state solutions P ik>0, iES, keZ as

t--o to the following coupled linear matrix differential equations:

I
1I5



I
(t) + XT p t) + p (t)X + E qk P (t)

ik 1k ik 1k 1k Ij ik
JeS

+ E ckj P jCt) + Q k = 0, iES, keZ, te(-00,0] (5.1)

JEZkjiI z
J#k

I with boundary conditions,

3 Pk (0) = 0, VieS, VkEZ (5.2)

where Q ik >0, VieS, VkeZ, and

I A -BK -05 qk - 0, iES, keZ (5.3)
Ai k i  ij L jk

JES jEZ

I J#1 j~k

Proof of necessity:

Assume that (2.2) is exponentiall,; stable in the mean square under the

control law u =-K x, ViES. Let W(x,r,-,t)=x TQ(r,r))x, reS, 7eZ denote a1 i

quadratic positive definite function. Then it follows from Lemma 4.2 that

there exists a quadratic positive definite function V(x,r,1),t) VrES and VnEZ

that satisfies the condition (4.10) and is in the domain of the weak

infinitesimal operator Y such that YV(x,r,n,t)=-W(x,r,n,t). Let us denote

the quadratic function that satisfies these conditions by

V(x,r,il,t)=x TP(r,n,t)x. We shall denote in the sequel Q(r,q)=Qik and

P(r,mt)=P kt) when r=iES and n=keZ.| 1k
Evaluating the function YV(x,r,n,t) for (2.2) under the control law

u =-K x when the quantities r=ieS and n=kEZ have occurred at some timei i

tE(-,0], we can show after some simplification that

IV = x (T + AT p (t) + P (t)A + E k P t)
lk t k Ik ik 1k qIj Jk

I
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I
+ kj P ij(t)jX, iES, kcsZ (5.4)
JEZ

Jtk

I
where A is given by (5.3). Further, since XV(x,r n,t)= -W(x,r,-Yl,t), we

have the identity

xT k (t) + A P (t) + P (t)A + E k P t)Ik k I k i k ik J I PJk

J#i

+ kJ 'j Ct)j + Q ik]x = 0', ES kEZ (5.5)
EZ

I
j;k

We note in particular that the quantity inside the brackets of (5.5) is

identical to the coupled matrix differential equations given by (5.1).

Let us examine the solutions to (5.1) under the boundary conditions

(5.2). We shall denote by 0 i(t,T) the fundamental matrix associated with

A k i.e.,

D (t,T) = exp(A ik(t-T)), iES, kEZ, -a<:tS50 (5.6)

Then, it is easy to check that under (5.1) and (5.2) the solutions P (t),
1k

iES, kEZ are given by,

Ct M t C T + Ea P (i)
l kJES i k jEZ kj ij

I0
I *1 j~k

tJ~i J:9k

I+ Q ik] lk (t',T)dT, iES, kEZ, tE(-00,0) (5.7)

I The coupled integral equations given by (5.7) have unique solutions

(P it), iES, kEZ} that are continuous on tE(-00,0). Further, since 4 it,T),

ViES, VkEZ are non-singular for t,TE(-W,0] and Q k>0, ViES, VkEZ, it follows

immediately from (5.7) that P (t)>0, ViES, VkEZ for t(-CO,0). Also, fromIk



the positive definiteness of P it), VieS, VkeZ and the non-negativity of1k

the transition rates of r(t) and n(t), it follows from (5.7) that theI solutions P (t), VieS, VkeZ are monotonically increasing on (-m,O] as t1k

decreases. Since, from Lemma 4.2, we know that V(x,r,n,t) satisfies the

condition (4.10), the solutions P ik(t), iES, kEZ} are bounded on te(-CO,0].

In other words, as t decreases, the P 1t), VieS, VkeZ, define a set of1k

monotone increasing sequences of positive operators on te(-w,0] that are

bounded from below. We now state a lemma for positive operators in Hilbert

space to prove the convergence of the sequence {P i(t),ieS}.

Lemma 5.1 (Akhiezer and Glazman 1981): Every monotonically increasing

sequence of bounded positive operators in Hilbert space converges strongly.

I From the above lemma, it follows immediately that the solutions

converge to steady state solutions P ik>0, iES, keZ} as t-mao. Hence, the

I necessary condition is proven.

Proof of sufficiency:
Let us assume thbt there exist steady state solutions P ik>0, iES, kEZ}

as t-)-o to the coupled differential equations (5.1) under the boundary

conditions (5.2). Then, it is easy to see that the function

V(x,r,iq,t)=xTP(r,n)x satisfies the conditions (a)-(c) in section 4 and also

I the condition (4.10). Evaluating £V(x,r,n,t) for the linear plant model

(2.2) under the control law u =-K x, iES when the quantities r=ieS and n=keZ

have occurred at some time te(-0,01, we have,

I =xT[AT p +P X + E qk P + E a P x, iES, keZ (5.8)
LVk T k 1k k j ik kj ij

J s JeZ

where AIk is given by (5.3). Since by hypothesis P lk' iES, keZ} satisfies

I (5.1), we have YV(x,r,7,t)=-W(x,r,n,t). Further, since W(x,c,q,t) is

positive definite VreS and VneZ, it follows from Theorem 5.1 that (2.2)

under the control law u =-K, ieS is exponentially stable in the mean square

Vtat . Hence, the proof is complete.

Remarks on Theorem 5.1:

* 60
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The stochastic stability analysis presented here takes into account the

decision errors and delays associated with the FDI decision making process

Most of the results on fault tolerant control systems available in the

literature so far (see Ji and Chizeck 1990, Sworder 1969, Wonham 1971), do

not account for these decision errors and delays, and hence, do not ensure

stability of the solution x=O of the linear plant model (2.2) that describes

3the behavior of a true active fault tolerant control system. The stability
analysis for these systems investigated by Mariton accounts only for the

delayed derisions and false alarms of the FDI schemes. The stability

analysis presented by Mariton (1989) assumes that correct failure isolation

is done following a failure and that the state spaces of the FDI and failure

processes are identical. These assumptions are questionable in real systems

where the FDI scheme might involve a failure detection phase and a failure

isolation phase (Walker 1980) and incorrect failure isolation can result

following the detection of the presence of a failure. Thus, the analysis of

Mariton (198910 is also inadequate to ensure the stability of active fault

tolerant control systems. Hence, the results derived in this section are a

*significant contribution towards the stability analysis of active fault

tolerant control systems that reconfigure the control gains using

3 information from the FDI scheme.

We shall now show that the results on the JLQR problem investigated by

Wonham (1971) can be derived as a special case of the results in this

section. For the JLQR problem, it is assumed that the transitions of the

failure process n(t) are detected instantaneously, which implies r(t)=n(t)

Vtat . Hence, we need to consider only the cases where r=n=iES, and analyze0

the stochastic stability of the linear plant model under any control law of

the form u =-K x, iES. It is obvious from the assumption of instantaneous
detection that when j~iES, we have qj =0. Hence, when r=n=ieS, it follows

* that

A = -A -BK -0.5I , iES (5.9)II 1 i ]

J*js

I When the A in (5.1) are replaced by the A1, iES, defined above, then the
1k

results for the JLQR problem derived by Wonham (1971) are obtained as

* special cases of the sufficient conditions for stability given by Theorem

5.1.

I



We mention finally that if the linear plant model (2.2) is

exponentially stable in the mean square, then it is almost surely

asymptotically stable in probability. The proof follows immediately from

Theorems 4.2 and 4.4. Thus, if the conditions in Theorem 5.1 are satisfied,

then the linear plant model (2.2) under the control law u =-K X, iES is

almost surely asymptotically stable in probability. In other words, the

existence of steady state solutions (P k>0, ieS, kEZ} implies that the plant

model is almost surely asymptotically stable in probability.

6. CONCLUSIONS

* The stochastic stability of fault tolerant control systems

incorporating a real time reconfiguration strategy based on FDI decisions

has been addressed in this paper. In particular, necessary and sufficient

conditions for exponential stability in the mean square of linear fault

tolerant control systems were derived. It is shown that these conditions are

also sufficient for almost sure asymptotic stability in probability. The

reqiiltq in thi- :) -ne- Pre ilso shown to be an extension to the earlier

results on JLQR problems, where instantaneous detection of mode transitions

of the failure process is assumed. Since such an assumption is invalid when

a realistic FDI scheme subject to errors and delays is used to detect these

changes, the results in this paper are significant contributions toward the

stability analysis of actively reconfigurable fault tolerant control

systems. As already pointed out, the earlier results on reconfigurable

control systems have the drawback of addressing only the deterministic

stability of the closed loop system after the FDI scheme has correctly

identified the failures. Such an analysis does not guarantee the stochastic

stability of the solution x=O for the system under incorrect failure

isolation for all FDI transition rates. This will be illustrated by means of

a numerical example for the linear plant model (2.2) in the companion paper

(Srichander and Walker, 1990).I
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i 2.', A Stocha,' *cally Stable FTCS Feedback Control Law

In this secti)n, we d-rive a lineai state feedback law for LTI FTCS and use

the stochastic stability conditions derived in the previous subsection to

anolyze its stab'lity for several different case. In particular, the

necessary and sufficient conditions for LTI FTCS with linear state feedback

are employed. As we show in the following manuscript, when the coupled

matrix Riccati equations given in the last subsection have a finite steady

state solution, almost sure asymptotic stability in probability is assured,

and the simulation results we show in this subsection demonstrate this.

iWhen a finite steady state solutior does not exist, then the system does not

possess exponential stability in mean square, and again our simulation

results show that divergence can occur.

V aze in the process of running some extra simulations before submitting

this manuscript for publication. Therefore, it should be treated as a draft

V-sion.
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ABSTRACT

The synthesis of a feedback control law for active fault tolerant

linear control systems is addressed in this paper. This synthesis technique

* is based on the use of a control model description of the system that

closely resembles the actual system dynamics, which cannot be directly

* deduced due to random decision errors and delays by the failure detection

and identification (FDI) system. The definition of stochastic

stabilizability of active fault tolerant control systems and of the control

model is introduced. Necessary and sufficient conditions for stochastic

stabilizability of the control model are then established. These conditions

lead to necessary conditions for the stochastic stabilizability of the class

of active fault tolerant control systems examined. These conditions also

provide the information necessary to construct an active fault tolerant

feedback control law. The stochastic stability of the resulting closed loop

* system under this fault tolerant control law can then be examined by

applying the necessary and sufficient conditions for exponential stability

in the mean square derived in a companion paper. Finally, a numerical

example is presented to illustrate the feedback control design methodology

* and to verify the results of the stability analysis.
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U 1. INTRODUCTION

Active fault tolerant control involves detecting and identifying

failures of the controlled system that occur at random instants of time and

then compensating for these failures by some automatic logic. In particular,

I the control law must be reconfigured following the diagnosis of a failure by

the automatic failure detection and identification (FDI) scheme. Because the

FDI logic operates on measurement data corrupted by random noise and because

the failure events to be diagnosed are random in nature, the FDI system is

subject to random errors and delays. If the control design does not account

for these errors and delays, catastrophic instability of the closed loop

system can result, even if the system possesses deterministic closed loop

stability for every failure mode that can be tolerated when the appropriate

reconfigured control law is used.

In this paper, we consider the problem of synthesizing a fault tolerant

control law for a linear system that is subject to actuator failures, and of

verifying the stochastic stability of the resulting closed loop system

(using the theory of (Srichander and Walker 1990)). The control synthesis and

stability analysis techniques are developed such that the random failures of

actuator components and the random errors and delays of the FDI system are

accounted for. A numerical example of a simple fault tolerant system is used

to demonstrate the control synthesis method and to illustrate the

analysis of its closed loop stochastic stability.

In the remainder of this section, we will summarize the existing

results relevant to control law design for systems subject to random mode

3 changes, including active fault tolerant control systems.

The results that are relevant to our problem are those that involve the3 control of systems subjcct to random variations in the system parameters.

Work on this topic dates back to Krasovskii and Lidskii (1961), who derived

an optimal control law that minimizes an integral performance criterion for

systems undergoing random structure variations (mode transitions) governed

by a Markov process. The solution to this problem is based on the use of

stochastic Lyapunov functions (Kushner 1967), the parameters of which are

Functions of the random process governing the structural changes. In

(Krasovskii and Lidskii 1961), sufficient conditions for the optimality of

this control law in minimizing a mean square error criterion are derived
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assuming that an admissible control exists. The latter assumption ensures

the boundedness of the cost function under the optimal control law.

Further investigations of the control problem for continuous time

linear systems with structural parameters that randomly vary in a finite

state space were carried out by Sworder (1969) and by Wonham (1971). In

(Sworder 1969), the stochastic maximum principle is used to derive an

optimal control law that minimizes an integral performance criterion

function, while in (Wonham 1971), the dynamic programming principle is

employed to arrive at a solution. In both cases, the optimal control law for

a system with parameters governed by a jump Markov process is a state

feedback control with gains that switch according to the state of the jump

process. When the performance criterion of interest is quadratic, this class

of problems leads to a jump linear quadratic regulator (JLQR) solution. In

(Wonham 1971), sufficient conditions are also derived for the existence of a

steady state optimal solution to the jump linear quadratic regulator problem

* based on the average transition rates between the modes and the

stabilizability of the linear plant for each mode of the jump process.

In each of the formulations discussed above, it is assumed that the

mode changes are correctly diagnosed immediately after they occur. In other

words, it is assumed that the controller has knowledge of the true system

description at every instant of time. The optimality of the resulting

control law is guaranteed only under this restrictive assumption.

In practice, however, the mode changes must be identified using an FDI

scheme. The behavior of these FDI schemes is statistical in nature due to

the presence of measurement noise. Thus, the FDI system has nonzero error

probabilities associated with its decisions and is subject to random

decision delays. The likelihood of decision errors by FDI schemes can

usually be reduced by increasing the time allowed for identifying a mode

change. This modification, however, has the detrimental effect of increasing

the average delay in detecting and responding to mode changes.

Under the delayed and imperfect decisions that are actually generated

by the FDI scheme, the control law synthesis techniques discussed above do

not even guarantee the stability of the unforced solution to the plant

equations, let alone the optimality of the control law. Hence, any practical

fault tolerant control design that reconfigures the control law based on FDI

* decisions must take into account the random detection delays and decision

errors associated with those decisions to ensure the stability of the closed

I
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loop system.

I The design of active fault tolerant controllers that account for these

effects to varying degrees have been investigated in (Caglayan et al. 1987),

(Looze et al. 1984), (Looze, et al. 1985), and (Moerder et al. 1989). In

(Looze et al. 1984), for instance, a reconfigurable control algorithm for a

linear system based on the linear quadratic design methodology is presented.

The algorithm uses the linear quadratic design parameters for the unfailed

system as a basis for choosing the parameters for the failed system.

Further, it is assumed that correct failure mode information is available to

the controller at all times except for imprecise knowledge of the remaining

control effectiveness. The validity of this assumption is questionable in

practice, particularly when analytic redundancy techniques are used for FDI

(Horak, 1988) T- (Moerder et al. 1989), the feedback gains for the no-fail

and control-impaired cases are designed off-line and scheduled as a function

of the FDI information. Again, the assumption that the FDI logic requires

only a short delay before correctly identifying the failure mode renders the

technique inapplicable for many practical systems.

In each of the references cited above, the choice of the control law is

based on deterministic stability analysis of the resulting closed loop

system for those cases where the FDI scheme has correctly identified the

failure modes. Clearly, under random parametric variations in the given

system and random detection delays and errors by the FDI scheme, the

resulting system is actually governed by stochastic differential equations.

Hence, the stability conclusions of the references above are suspect. This

will be demonstrated later in this paper by a numerical example.

In this paper, we present a control synthesis technique that yields a

3 fault tolerant feedback control law that explicitly accounts for the random

decision errors and delays associated with the FDI process.

The rest of the paper is organized as follows: In section 2, we will

formulate the fault tolerant control problem and introduce a control model

for the system dynamics. Then, we derive an optimal control law that

minimizes a given performance index for the control model. The definition of

stochastic stabilizability is also given in this section. The results are

then used in section 3 to derive necessary conditions for stabilizability of

the plant. In section 4, a synthesis method for a fault tolerant control law

for the actual plant is presented, which makes use of the information

provided by the stabilizability conditions. The stability analysis of the
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plant under this control law is then addressed using the results in

(Srichander and Walker 1990). The control design methodology and the

stability analysis are then illustrated by a numerical example in section 5.

3 Conclusions are summarized in section 6.

2. PROBLEM FORMULATION AND THE CONTROL MODEL

The stochastic evolution of the systems of interest in this paper are

characterized by two random processes, one describing the mode jumps

occurring in the system description (which represent the failures), and the

other describing the FDI process that monitors these random parametric

jumps. The linear plant model is assumed to be described by:

3 x(t) = Ax(t) + B(n)u(x,r,t) (2.1)

where u(x,r,t)=-K(r)x(t). In (2.1), 71(t) is a continuous time, discrete

state Markov process modeling the failures occurring in the system and takes

values in the finite set Z={1,2,..,v}. In (2.1), r(t) is also a continuous

3 time, discrete state Markov process that models the FDI process and takes

values in the set S={1,2, ., }. We will assume that a (i,jEZ) representsIi

the transition rates of the failure process n(t) (i.e. the failure rates)
and qk (i,jES, keZ) represents the conditional transition rates of the FDI

a J

process r(t) given that n(t)=k (i.e. the rates of FDI decisions). The ratesI ~kn
aJ and q are assumed to be known. x(t)E n is the process state vector and

u(x,r,t)E£m is the control vector, which is explicitly constrained to be

3 dependent only on the process state vector x(t) and the state of the FDI

process r(t). In other words, the control is not allowed to depend on the

3 true failure state n(t), which is known only indirectly through the FDI

state r(t). We will also assume that u(x,r,t) takes the linear state

3 feedback form u(x,r,t)=-K(r)x(t), which will be shown later in this paper to

be the form of the globally optimal feedback control law for a quadratic

cost problem related to the problem at hand.

Note that (2.1) restricts the effects of failures to the input

sensitivity matrix B. The results derived here, however, extend directly to

the case where the system dynamics matrix A is affected by the failure.

Also, nonzero bias terms that are dependent on ,, can be added to (2.1) if

3 the results are suitably modified. For brevity, we will present complete

results only for the restricted case described by (2.1).
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The synthesis of a fault tolerant feedback control law

u(x,r,t)=-K(r)x(t), reS for the plant model (2.1) is the main focus of this

paper. We will also establish necessary conditions for the existence of a

fault tolerant control law of this feedback form that stochastically

stabilizes the plant (2.1) (i.e. necessary conditions for stochastic

stabilizability). These conditions will be seen later to relate directly to

the informatin needed to construct the control gain matrix K(r).

In order to derive necessary conditions for stochastic stabilizability

3 of the plant model (2.1), we introduce the following control model

description:I.
x(t) = Ax(t) + B(n)u(x,r,nmt) (2.2)I

Obviously, the control model (2.2) differs from the plant model (2.1) in the

form of the control law. For the control model (2.2), we assume that the

control law u(-) is a function of the system states x(t), the FDI process

state r(t), and the failure process state n(t). In other words, we assume in

(2.2) that we can design a fictitious controller that uses information on

both of the Markovian processes r(t) and n(t). As noted above, the state of

I the failure process n(t) is not available to the controller in practice.

However, our objective here is to solve an optimization problem for the

control model (2.2), which then will help us to derive necessary conditions

for stochastic stabilizability of the plant model (2.1) and to construct a

control law for the plant (2.1) that results in a stable closed loop system.

In deriving the optimal control law u (.) for the control model (2.2),

we specify that any control law u(.) that uses information from the failure

process state n(t) only and disregards the information provided by the FDI

process state r(t) is not an admissible control law. In other words, if D

denotes the class of admissible controls for the control model (2.2), then

(: txRnSxZ-_)Rm or D: txR'nS-R m. This assumption is consistent with the

I nature of the fault tolerant control problem, where only information from

the FDI process state r(t) is available in practice. Notice that if the FDI

3 and fai1vrp i rnr-zc cfes are the same at every instant of time (as is the

case under the assumption of instantaneous correct diagnosis of the failure

mode by the FDI process), then the plant model (2.1) and the control model

(2.2) are identical (each breaking down to the Markovian jump system
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considered in (Ji and Chizeck 1990)).

Before we derive the optimal control law u ()e? for the control model

(2.2), we will define stochastic stabilizability with reference to the plant

model (2.1) and the control model (2.2).

Definition 2.1: The plant model (2.1) is said to be stochastically

stabilizable if, for any x ERn, r ES, and -aoEZ, there exists a linear state

feedback control law u(x,r,t)=-K(r)x(t) such that for any bounded positive

definite matrix M(r,n) (possibly time varying) which is a function of the

FDI and failure process states, the solution x(t) of (2.1) satisfies the

3 following inequality for some bounded M>O:

lim EjJT xT(t)M(r,1)x(t)dt . xTX (2.3)

0

3 (We will call a mxn matrix bounded if there exists a positive constant /3

such that IjAx ii-f{lxil VxERn , x*O. Here IjxII=(x 2 +x2 +...+x 2 )1 2 whei- x are the

components of xERn).

3 It is easy to see that under the above definition, stochastic

stabilizability of the plant model (2.1) implies that there exists a

feedback control law u(x,r,t)=-K(r)x(t), rES which drives the state x(t)

from any given initial condition x ERn asymptotically to the origin in the0

mean square sense given any initial conditions r ES and qoEZ on the FDI and

failure process states.

Definition 2.2: The control model (2.2) is said to be stochastically

stabilizable if, for any x0 ER , r ES, and qoeZ, there exists an admissible

state feedback control law u(x,r,mt)=-K(r,fx(t) such that for any bounded

positive definite matrix M(rn) (possibly time varying) which is a function

of the FDI and failure process states, the solution x(t) of (2.2) satisfies

the following inequality for some bounded M>O:

I ur Eff x T(t)MWr, rflx tdt}: x XThx (2.4)

The stochastic stabilizability of (2.2) implies that there exists a
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feedback control law u(x,r,n,t)=-K(r,n)x(t), rES and nEZ among the class of

admissible controls P, which drives the state x(t) of (2.2) from any given

initial condition x E n asymptotically to the origin in the mean square0

sense given any initial conditions r ES and n 0EZ on the FDI and failure0

process states.

We will now derive an optimal control law for the control model (2.2)

that minimizes a particular performance index. This will then enable us to

derive stabilizability conditions for the plant (2.1), which in turn will

lead to a control law for the plant (2.1). The notation used in the

discussion to follow will be the same as that used in (Srichander and Walker

3 1990). In particular, the operator Y will denote the weak infinitesimal

operator of the (n+2)-dimensional jointly Markov process {x,r,q}.

I Consider the following index of performance,

I J = E!f L(x,r,7,),t)dt} (2.5)
0

I where L(-) is a positive definite function. Let us consider the function

V(x,r,mt) that satisfies the functional equation

1
V~~r -mt) = n E t L(x,r,-o,u,t)dtlx(t),r(t),-q(t) (2.6)VCx,r,T),t) =e -t' 26

Then the following theorem holds.I ___ .

Theorem 2.1: The optimal control u ()ED for the control model (2.2) that

I minimizes (2.5) is the solution to Bellman's equation,

UE fV(xr,-,t) + L(xr, -qut)] = 0 (2.7)

i subject to the boundary condition,

V( (T),r(T),-(T),T) = 0 (2.8)

The proof for this theorem follows similar lines to those used in

I (Wonham 1971) for deriving an optimal control law for the Markovian jump

system with perfect information structure.
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In particular now, let us consider the positive definite quadratic

3 function

i - -T - T

L(x,r,-,u,t) = x Q(r, )x + u ()R(r,n)u(.), rES, iQEZ (2.9)

where Q(r,in)>O, R(r,in)>O VrES and VYEZ. Further, let us assume V(x,r,r?,t) is

the quadratic function V(x,r,mt)=x Tp(r,1),t)x. We shall denote Q(r,n)=Qik ,
R~r~n)=RikP(r,,t)=P ik(t) and u(x,r,mt)=u k(t), when r=iES and n=kEZ.3 Evaluating XV(x,r,mt) for the control model (2.2) when the quantities

r=iES and n=kEZ have occurred at time t, we have

-T[~() T k --

XV =x p ( t ) + A Pk (t) + P (t)A + E q k(P (t)-P (t))
1k k 1k JES ij jk ikI s

J~i

a kJ(P ij(t)- k (t))lX + xTpik (t)Bu ik (t)

JEZkjj I1k kk
j]k

+ u (t)B P t)x, iES, kEZ (2.10)ik k i

I It can be easily shown that the minimization in (2.7) using (2.9) and (2.10)

gives,

u *k (t) = -R-1 B TP (t)x(t), iES, kEZ (2.11a)ik ik k ik

= -K (t)X(t), iES, kEZ (2.11b)1k

I where the P (t), iES, kEZ, solve the coupled matrix Riccati equations,1kI•
(t) + XT P (t) + P (t)A + E q kP t + E P (t)

ik 1k ik ik 1k 1J jk +  
k j ij

J i j~k

KT(t)R K" (t) + Q 0, icS, kEZ (2.12)
k ik ik 1k

with boundary conditions,I
Pk (T) = 0, ViES, VkEZ (2.13)
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In (2.12), A (t) is defined as

k
A ik(t) =A - BK ik(t) - 0.5Eq -0.5 , a ES, kEZ (2.14)

JES jErZ
J*i J~k

The coupled Riccati equations given by (2.12) have identical structure

to the coupled Riccati equations derived by Wonham (1971). Hence, under the

boundary conditions (2.13), these equations can be solved by

quasi-linearization and the successive approximation technique given in

(Wonham 1971). We shall assume without loss of generality (because both the

plant and the control model are time invariant systems) that T=O and t =-m0

in (2.5). It follows from (Wonham 1971) then that the solutions to (2.12)

with the boundary conditions (2.13) are unique, non-negative definite and

monotonically increasing as t-).-a Further, the assumption that Qk >0 implies

P (t)>O for iES, iEZ and VtzO. Therefore, the control law given by (2.11)

is the unique optimal control for this quadratic cost function, and it has

the state feedback form that we hypothesized earlier.

Let us assume that as t- -co there exist steady state solutions P >0,1k

ViES and VkEZ to the coupled Riccati equations (2.12) with the boundary

conditions (2.13). Then it -ollows from (2.6) that the minimum cost under

the control law (2.11) is given by,

I T - x (2.15)min o ro 0

For any other admissible control law u(.)ED for the control model (2.2), the

cost incurred for the performance index (2.5) is greater than J . Now, let

us consider the case where the controller has information only on the FDI3 process state r(t). Under the assumption that n(t)=r(t)=iES and that S=Z,

the optimal control law (2.11) becomes,

u (x,r=i,-=i,t) = -K (t)x(t), iES (2.16)

So, a natural restriction to make to the optimal control law (2.11) in order

to arrive at a control law that depends only upon the FDI state r(t) is to

use the control law:

I
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u(x,r,t) u (x,r,-,t) = -K (t)x(t) when r=i (2.17)

This will lead later to a control law for the plant (2.1) without the

assumption that S=Z. Let us denote by J the cost incurred under the control

law (2.17) for the control model (2.2). Then JaJ , the equality sign

applying when mode changes of the failure process are instantaneously

detected.

The next section gives conditions for stochastic stabilizability of the

control model (2.2) and the plant model (2.1). These conditions will

ultimately lead to a control law for the plant model (2.1) that is similar

to the restricted control law (2.17).

1 3. CONDITIONS FOR STOCHASTIC STABILIZABILITY

The following theorem givs -.,Vtios L thc stochastic

stabilizability of the control model (2.2).

Theorem 3.1: The control model (2.2) is stochastically stabilizable if and

only if there exist steady state solutions {P >0, iES, kEZ} to the coupled

Riccati equations (2.12) under the boundary conditions (2.13) for any Qik >0,

R >0 VieS and VkEZ.ik

I The proof of this theorem is given in the Appendix. Notice that the

conditions for the stochastic stabilizability of the control model (2.2)

given by Theorem 3.1 are very easy to check by numerically solving (2.12),

as opposed to the conditions for stochastic stabilizability of the jump

linear quadratic regulator problem derived by Ji and Chizeck (1990), which

cannot be checked in practice.

Necessary conditions for stochastic stabilizability of the plant

model (2.1) are given by the following theorem:

U Theorem 3.2: Necessary conditions for stochastic stabilizability of the
plant model (2.1) are that there exist steady state solutions {P ik>0, iES,

kEZ} to the coupled Riccati equations given by (2.12) under the boundary

conditions (2.13).

I
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Proof:

3 Let us assume that steady state solutions (P >0, iES, kEZ} do not

exist to the coupled Riccati equations given by (2.12). Then, it follows

from Theorem 3.1 that no admissible control law of the form

u(x,r,1n,t)=-K(r,))x(t), rES and 77EZ exists for the control model (2.2) such

that condition (2.4) is satisfied. We need to show that under the above

assumption there exists no control law of the form u(x,r,t)=-K(r)x(t), rES

to the plant model (2.1) that satisfies the condition (2.3). We shall show

* this by contradiction.

Suppose that when steady state solutions (P k>0, iES, kEZ do not exist

to the coupled Riccati equations (2.12) under the boundary conditions

(2.13), a control law of the form u(x,r,t)=-K(r)x(t), rES, exists for the

plant (2.1) such that condition (2.3) is satisfied. Now, consider the

following control law for the control model (2.2):

u(x,r,n,t) = -K(r)x(t), rES (3.1)

3 The above control law uses information only from the FDl process r(t) (and

hence is a restricted information control law), but nevertheless belongs to

the class of admissible controls P. Using the control law (3.1), it is easy

to see that the plant model (2.1) and the control model (2.2) become

identical. This implies that the solutions x(t) to (2.1) and x(t) to (2.2)

respectively are such that x(t)=x(t) Vtat provided x =x . Since the control0 0 0

law u(x,r,t)=-K(r)x(t) for the plant (2.1) satisfies condition (2.3) by

hypothesis, it follows immediately that the condition (2.4) is also

satisfied under the control law (3.1) for the control model (2.2). In other

words, the control model (2.2) is stochastically stabilizable when steady

state solutions {P >0, iES, kEZ} do not exist to (2.12). But this1k

contradicts Theorem 3.1, and this proves the theorem.

Note that the conditions to be checked in Theorem 3.2 are identical toI hose in Theorem 3.1, namely the existence of steady state solutions -Pk'

iES and OEZ to the coupled Riccati equations (2.12) with boundary conditions

(2.13).

3 4. CONTROL LAW SYNTHESIS AND STABILITY ANALYSIS

Theorem 3.2 is very useful for determining whether it is possible to

7



I
synthesize a feedback control law for the plant model (2.1) that will lead

to a stochastically stable closed loop system. The non-existence of steady

state solutions {P >0, iES, kEZ} to (2. 12) under the boundary conditions1k

(2.13) implies that no linear feedback control law u(.)= -K(r)x(t), rES can

stochastically stabilize the plant model (2.1). Under these conditions, a

fault tolerant control system designer has no choice but to try to redesign

the FDI algorithm such that the transition rates of the modified FDI process

r(t) lead to the existence of steady state solutions {P >0, iES, kEZ} to1k

the coupled Riccati equations. If no such FD redesign can be found, then

the designer must admit defeat and seek a complete redefinition of the

system specifications because stochastic stability of the feedback system is

not possible.

Assuming the conditions for stochastic stabilizability of the plant

(2.1) are satisfied, we will indicate below a synthesis of a feedback

control law for the plant model (2.1) that accounts for the transition rates

of the FDI and failure processes in its design. We will refer- to this

control law as a fault tolerant control law for the plant model (2. 1). The

closed ioop stochastic stability of the plant model (2.1) under this control

law can then be examined using the results in (Srichander and Walker 190),

which will be tated later in this paper.

4.1 Feedback control law synthesis.

Lr-t us consider the optima] control law (2.11) that minimizes the

. amonce index (2. 5) for the control model (2.2). This control law uses

M,>:r-mation from both the iailure process and the FDI process to ensure

, 1l...]ity oft .t)'tven cost function. The steady state optimal control law
h e I 0 ... 1- . A' II Z- , will Ib dt uted by u(x,rj )=-K x(t).

In synt(/sizing a feeabpck control law for the plant model (2.1), the

.. ,t olle hi ac-ess only to the FDI process state r(t). In practice, the

h'. is olesi; ned with the intent that the FD process state r(t)

d i low , t l- r a'-occs state i(t) as closely as possible. With

in i, i reasonie choice for- a control law for the plant (2. 1) is

-' r try u(! ): I in the control law (2. 11), just as we did in

,)-' law given by (2. 17), which was

*r;r, fi. t, t c:> , wh S Z, Following this argument, we will choose

1 ti,- f ; i; t, t<t 1 ,n {,1 1aw has.d on t he fol-)II owinF logic.

I
I ,
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(i) When FDI and failure processes have identical state spaces (i.e. S=Z):

When the FDI scheme indicates r=iES, the fault tolerant control law

u(x,r,t)-u will be chosen as:

u --R-1 BT x(t) = -K x(L) = -Kx, iEb (4.1)

I exactly as in (2.17).

(ii) When FDI and failure processes have different state spaces:

Assume that ZcS. This implies that the FDI process can have additional

states relative to the failure process. This is common because

additional FDI process states are often necessary to represent

intermediate FDI conditions, such as the detection of a failure but

without isolation. Let us assume that the Z is arranged such that when

r takes increasing values in the set Z={0,2,.. ,}, the system operation

is more degraded. Similarly, let S be arranged such that when r takes

increasing values from the set Sa{1,2,.z.,l"}, the FDI scheme indicates

greater degradation in the system operation. In this case, the

following fault tolerant control law will be chosen for (2.1) when

F=iES:

(a) When r=iEZ, then u. is chosen as in (4.1).

(b) When r=i4Z, then select

U. 2 (Ui +u ) iES (4.2)
2 i-a i+b

where a and b are positive integers quch that m n(i-a)EZ and
a

min(i+b)EZ. Thus, the control is selected as the average of

tLn control for the failure state for which FDI process state

i is the appropriate FDI state and the control for the next

3 level of degradation of the failure process. Other strategies

could also be used for selecting the control, but this

strategy has the advantage that it incorporates some "hedgingy"

against the next possible level of degradation.

I 4.2 Stability analysis.

The cloed loop stocha st.ic stability of the plant model (2. 1) under the

fault tolerant control law u =-K x, iES, given by (4.1) and (4.2) can be

investigated by applying Theorem 5. 1 of (Srichander and Walker 1990). ThisI



I
theorem is restated below:

I Theorem 4.1 (Srichander and Walker 1990): A necessary and sufficient

condition for exponential stability in the mean square of the linear plant

model (2.1) under the control law u =-K x, iES, given by (4.1) and (4.2) is

that there exist finite steady state solutions {P >0, iES, kEZ} as t-mw toI 1k
the following coupled linear matrix differential equations:

(t) + A P (t) + P (t)X + E q' P t)
ik ik ik ik 1k 1j jk

JEs

I + E CkJ P i(t) + Q = 0, iES, kEZ, tE(-w,0] (4.3)

jEZ

j:Ak

with boundary conditions,

P (0) = 0, VieS, VkcZ (4.4)

where Q >0, VieS, VkEZ, andik

= A - B K - iq - 0.5 E c iES, kEZ (4.5)1k k | I jk'

jES jEZ

jv i jok

Note that the linear matrix equations given by (4.3) and (4.5) differ

from the matrix Riccati equations given by (2.12) in the value of the

feedback gain K that appears in the terms. Therefore, the Riccati equations

rep-esented by (2. 12) must bc solved first to establish the possible

stochastic stabilizability (or the lack thereof) of (2.1) and to synthesize

the control law (4.1) and (4.2). Then, the equations (4.3) can be solved to

determine whether the resulting closed loop system possesses stochastic

stability.

Note also that Theorem 4.1 states necessary and sufficient conditions for

stochastic stability of the closed loop plant. Thus, checking these

I Unditions leads to a defir, ite conclusion regarding the stochastic stability

of the closed loop plant.

We vil now illustrate the above fault tolerant control law design

methodology and stability analysis for the plant model (2.1) with a

I
*I2
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numerical example. Numerical simulation results for the resulting closed

I loop system will then be presented to verify the Theorem 4.1.

5. NUMERICAL RESULTS

To illustrate the design methodology for active fault tolerant control

systems presented above and the stability conditions derived in (Srichander

and Walker 1990), we will consider a first order system with two possible

modes of operation, i.e. Z={l,2} where -0=1 represents a "normal" system and

In=2 represents a "degraded" system with Markovian transitions for the

failure process -q(t). We assume that the FDI process intended to detect

I these mode changes uses single sample tests on a test statistic that is

corrupted by additive white noise. Therefore, the FDI process state r(t) is

also Markovian with the same two states (S=Z={l,2}). The following numerical

parameters are used for this example:

A=0.4 (hence, the open loop system is unstable),

B =1.0, B =0.2, a =0.005, a =0.001.i1 2 12 21

Thus, a "degraded" system has only 20% of the control effectiveness of a

I normal" system. Such a loss occurs every 200 time steps on average, and the

system is capable of "self-healing", but the average time to self-heal is

1000 time steps.

We will assume that the FDI test statistic examined at each time step

is N(0,1) under normal conditions (1=1) and N(I 1) under degraded conditions

(n=2). Here, N(a,o-2 ) represents a normal distribution with mean a and

variance (T . The threshold for this test is denoted T

We shall further assume that there is a second Lest which is intended

to recover from false degradation indications by the FD1 scheme. These tests

are frequently used in practice to recover from false alarms, and such a

test is apprpriate in this example in light of the system's capability to

self-heal. The test statistic for this test will be assumed to be N(0,1)

when a degraded system is under test and N(1,1) when the system is normal.

The threshold for this test is T

Both FDI tests are assumed to be performed at a rate of 5 Hz.

We shall illustrate below the synthesis of a fault tolerant control law

for the above example for several different FDI transition rates, which are

determined by the thresholds T1 and T We shall also examine the stochastic
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stability of the solution x=O of (2.1) under the control law that results

from using (4.1) and (2.12). In all cases, the computation of Pik (t), iES

and kEZ in (4.3) and of P ik(t) in (2.12) was truncated after 200 secs (1000
time steps), which should be sufficient time to indicate convergence of the

I solutions to a steady state or nonconvergence.

Case (1)

Let us assume that the thresholds for the FDI scheme are T =1.8 and1

T =2.0. It is easy to calculate that under these conditions the FDI2

transition rates are,

q1 =0.18, q2 = 1.06, q=0.79, q 2 =0.121212 " 2 =  " 9  q21

I Note that correct detections are nearly 6 times more likely than false

alarms and recoveries from false alarms are more than 6 times more likely

than continued false isolations. These behaviors are not uncommon in

practice.

In synthesizing the fault tolerant control law, the following

parameters are assumed for the quadratic cost (2.9):

R =1.0, VieS, VkEZ

I Q =1.0, Q =0.5, Q =1.75, Q =1.0Q11 " 12 " 21 Q22

I The following state feedback gains are obtained for the fault tolerant control

law using the design methodology given in section 4.1:I
K =1.538, K =4.225I1 2

The closed loop system then has the following deterministic stability

characteristics under each combination of T and r:

r A - B(io)K(r)

1 1 -1.138 Stable under normal conditions.

1 2 -4.625 Stable following false alarm.

I 2 1 0.093 Unstable with undetected failure.

2 2 -0.445 Stable following correct detection.

8
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It is worthy of note that this system does not possess deterministic

stability for one of the two cases where the FDI process state does not

correctly indicate the failure process state. Most of the previously

reported efforts to design reconfigurable control laws would accept this

control law as satisfactory despite this instability because the closed loop

system is deterministically stable for both cases where w=r. As we shall see

below, however, the stochastic stability of this system must be carefully

examined when FDI errors and delays can lead to periods when 7 and r differ.

The stochastic stability of the closed loop plant using the above

* parameters can be investigated by applying Theorem 4.1. We will assume

that Q !k=1.0, ViES, VkEZ in the linear matrix equations (4.3). Note that

these are not the values of Q ik given in the cost function. However, Theorem

4.1 does not require that the linear matrix equations have a finite steady

state solution for just the given Qik but rather for any Qik such that Q ik>0

ViES and VkEZ. Therefore, Q ik=1.0 ViEZ and VkES is reasonable for solving

(4.3) in order to check the stochastic stability conditions.

A summary of the results for this case is given in Table 1. The

equations (4.3) under the boundary conditions (4.4) have steady state

Solutions for the thresholds and gains chosen here. From Theorem 4.1, we

infer that this condition implies that the solution x=O of (2.1) is

exponentially stable in the mean square. Further, from the remarks on

Theorem 5.1 in (Srichander and Walker, 1990), this implies that the solution

x=o of the plant model (2.1) is almost surely asymptotically stable in

probability. In light of the deterministic stability properties for this

system discussed above, we see that the system can "tolerate intermittent

intervals of instability" and still possess stochastic stability of a

relatively strict kind.

To verify these conclusions, a numericai simulation of the linear plant

using the thresholds and gains in Table 1 was carried out for a

duration of 100 secr (or 5000 time steps). This is sufficiently long for an

average of' 25 degradations or 5 self-healings to occur.

The occurrence of

failure process transitions was randomly triggered by checking the value at

each point of time of a pseudorandom number uniformly distributed

between zero and unity against a or a 2 depending on whether the state of12 21'

the failure process n at that time point was I or 2. respectively.
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order to

investigate the behavior

of the FDI scheme and the control law when a failure is present. Fig. 1 shows

one representative sample

function observed for this case. It is seen from Fig.1 that the solution x=O

of (2.1) observed is asymptotically stable, which in turn agrees with the

analytical results in section 5 of the accompanying paper (Srichander and

Walker 1990).

Case (2)

For the second case, we shall assume that the FDI thresholds are T =1.21

and T 2=0.8. This changes the transition rates of the FDI process from those

considered for case (1). The FDI test statistic is assumed to have the same

distribution function as in case (M). In synthesizing a fault tolerant

control law along the lines of section 3. 1, the following parameters were

selected for the cost function.

R =I.0, ViES, VkEZ

Q 11=1.0, Q 2=2.0, Q 21=0.5, Q 22= 1.5

5 Table 2 lists the various parameters obtained for this case. Again,

steady state solutions to equation (4.3) were obtained for the selected

3 design parameters. This implies that the solution x=O of (2.1) is almost

surely asymptotically stable. One sample function from a numerical

simulation of the plant model (2.1) for the above parameters with a forced

mode transition from state I to state 2 at t=5 secs is given in Fig.2.

Again, we can see that the simulation result agrees with the stability

results predicted in the accompanying paper (Srichander and Walker 1990).

Case (3)

3 For this case, the FDI lhiesholds and test statistics are assumed to be

the same as in case (2), but the gains K and K are chosen arbitrarily.1 2

These gains ensure stability of the deterministic closed loop system when
r=n. In this case, the solutions {P (t), iES, kEZ} to equation (4.3) under

1k

the boundary conditions (4.4) are unbounded as t-->-o, indicating that the

plant model under the above control law lacks stability in the exponential

mean square sense. The design parameters are summarized in Table 3. Again,

one representative sample function observed during the simulation run is

shown in Fig.3. It is easy to see that this sample function lacks

* exponential stability.

Cases (4) & (5)

I



I Two other cases were examined to illustrate the importance of

accounting for the FDI transition rates while synthesizing a fault tolerant

control law for the plant model to ensure stochastic stability. For case

(4), the thresholds are chosen as T =3.0 and T =1.5, while the gains are|1 2
selected as K =1.4 and K =2.25. For these design parameters, it follows from
Theorem 4.1 that the plant model lacks exponential stability in the mean

square. A representative sample function observed during the simulation run

is is shown in Fig.4.

In case (5), identical gains K1 and K2 are used, but the thresholds are

chosen as T =1.8 and T =2.0. For these parameters, the solutions {P (t),
1 2 ik

iES, kEZ} to (4.3) under the boundary conditions (4.4) have a steady state

solution. This implies that the plant model (2.1) for the above design

parameter values is almost surely asymptotically stable. One sample function

observed during the simulation is shown in Fig.5. This sample function can

be seen to have asymptotic stability. The design parameters for this case

* are summarized in Table 5.

Before concluding this section, the following comments on the numerical

results are in order: We first note that the gains chosen in each case study

ensure stability of the deterministic closed loop system when r=n. Under

incorrect decisions by the FDI scheme, we see from the simulations that for

two of the cases investigated, the solutions go unbounded as time increases.

In particular, cases (4) and (5) use the same gains K and K with different

transition rates for the FDI process. But the sample solution observed for

case (4) is not bounded as time increases. This representative example

3 illustrates the importance of accounting for the FDI process transition

rates in synthesizing a control law for fault tolerant control systems that

use FDI information for reconfiguring the control gains.

The reconfigurable control methodologies that have been investigated in

the literature (Caglayan et al. 1987, Looze et al. 1984, 1985 and Moerder et

al. 1989) do not account for the FDI transition rates in either deriving the

control laws or in addressing the stability of the resulting closed loop

system. Hence, when incorrect decisions by the FDI scheme are possible, the

stability of the resulting closed loop system is suspect. The numerical

3 examples presented in this section verify this claim.

6. CONCLUSIONS

3 The synthesis of a fault tolerant control law for the plant model (2.1)

that takes into account the transition rates of both the FDI and failure

8
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processes was developed. The necessary conditions for stochastic

stabilizability of the plant model were also derived. These conditions are

easy to check, and hence are useful tools for the fault tolerant control

designer. A numerical example was presented to illustrate the design

methodology presented here. The importance of accounting for the FDI

transition rates in synthesizing a feedback control law for the plant model

3 was clearly brought out through the simulation results.

APPENDIX

Proof of Theorem 3.1:

Let us assume that steady state solutions {P >0, ieS, kEZ} exist to1k

the coupled Riccati equations (2.12) under the boundary conditions (2.13)

for any Qk >0, R ik>0, VieS and VkeZ. Choosing the control law u(.) for (2.2)

as in (2.11), it follows that the cost function (2.5) under this control law

incurs the minimum cost given by (2.15) among all admissible controls U(')ED

to (2.2). Let us now choose M(r,n) in (2.4) as follows:

I (r, ) = Q(r,r-) + KT (r,n)R(r,n)K*(r,n), rES, 77EZ (A.1)

For this choice of M(r,n) it immediately follows that the condition (2.4) is

satisfied. This proves sufficiency.

To prove the necessary condition, we proceed as follows: Let us assume3 that steady state solution {P >0, iES, kEZ} do not exist to (2.12) under

the boundary conditions (2.13) for any Q ik>0 and R ik>0, VieS, VkeZ. We need

to show that under these conditions, there exist no control law

u(x,r,n,t)=-K(r,q)x(t), rES, -eZ to (2.2) that satisfies the condition

(2.4).

I Let us assume on the contrary that there exists an admissible control

law u(x,r,i,t)=-K(r,q)x(t), reS, -OEZ to (2.2) that stochastically stabilizes

the control model (2.2). Let us choose M(r,-)>O as follows:

M(r, ) = Q(r, ) + K T(r,-q)R(r,-o)K(r,7j), rES, OEZ (A.2)

where Qk'rr)>O, R(r,n)>O VreS and ViqeZ. Then it follows from the Definition

2.2 that for the above choice of M(r,ii), there exists a bounded M>O such

that condition (2.4) is satisfied. We notice that for M(rv) chosen as in

(A.2), the integrand in (2.4) is identical to the function L(.) defined in

(2.9). In other words, the control law u(x,r,mt)=-K(r,i)x(t), rES, iReZ

3 results in a finite cost for the performance function defined in (2.5). But

from Theorem 2.1, we know that the control law (2.11) produces the minimum

I cost J for the performance function (2.5). Since steady state solutions

{P >0, iES, keZY to the coupled Riccat' equations oo not exist, thisI k

I88
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implies J = . It follows from this that the control lawmmn

u(x,r,mt)=-K(rrfx(t), rES, 1EZ produces a finite cost JsxTMxO , M>O is a

contradiction. Hence the necessary condition is proven.
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Table 1 Summary of design and stability parameters for case (1)

Thresholds FDI rates Gains P values Comments
II

1.8 q=0.180 K =1.538 P =0.4235 P valiesT1I8 1 1 11 1k

T =2.0 q 2=1.060 K =4.225 P =2. 7188 converged.
2 2 1 Hence theI1 =0.790 P =-0. 1588

q21 21 system is

q21=0.114 P 22=1.3036 stable.

Table 2 Summary of design and stability parameters for case (2)

Thresholds FDI rates Gains P values Comments

T =1.2 q =0.575 K =1.500 P =0.4061 P values1I I 1 l2= " 1 "11 ik

T2=0.8 q1 =2.103 K =4.368 P =2.5783 converged.
2 12 2 12 Hence the

q =2.896 P =0.2016
2 21 system is

2
q 2 =1.059 P 2=.8586 stable.21 22

I
Table 3 Summary cf design and stability parameters for case (3)

Threshold FDI rates Gains P values Comments| 1k
=1.2 q=0.575 K =1.000 P =1.03x10 6  P values

1 1 11 1k

T =0.8 q =2.103 K =2.250 P =3.09x108  did not

1 5 converge.
q1 =2.896 P =6.42x10 System isq21 21Sytmi

q 2 =1.059 P =2.63xi08  not stable.
21 22

II

I fO -91



I

Table 4 Summary of design and stability parameters for case (4)

Thresholds FDI rates Gains P values Comments

=3.0 q1=0.067 K =1.400 P =1.97xi0 14 P values
1 121 11 1 k

=1.5 q =0.114 K =2.250 P =8.77xi0 1 6  did not2 2 2 12

=1.542 13 converge.
S21 21 =9.93x System is

2 16

q =0.334 P =4.71xiO not stable.
21 22i

I Table 5 Summary of design and stability parameters for case (5)

Thresholds FOI rates Gains values Comments
1

T =1.8 q12=0.180 K =1.400 P =0.5377 P valuesI1 1 11 1k

=2.0 q =1.060 K =2.250 P =22. 909 converged.
2 2 12 Hence the

q 21=0.790 P 21=0.3356 system is

q 2=0. 114 P =16 800 stable.
21 22

I 2

I
I

I
I
I
I



i
* Captions for Figures

Fig. 1 Example sample function observed during simulation for case (1)

Fig. 2 Example sample function observed during simulation for case (2)

Fig. 3 Example sample function observed during simulation for case (3)

Fig. 4 Example sample function observed during simulation for case (4)

Fig. 5 Example sample function observed during simulation for case (5)
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1 3. SUMMARY OF SIGNIFICANT FINDINGS

n The key theoretical findings of this study are primarily the conditions for

stochastic stability of FTCS derived in Section 2.2. The results on

* threshold determination in Section 2.1 and the results on linear state

feedback for LTI FTCS in Section 2.3 are of more practic3i interest.

I Summarizing these findings:

For a nonlinear fault tolerant control system subject to random

failures with Markovian failure occurrence behavior and with control

based upon the decisions of a failure detection system with Markovian

decision behavior, the following conditions exist for analyzing its

* stability:

1. Sufficient conditions exist based upon finding a stochastic

Lyapunov function candidate and testing its stochastic time

derivative in a particular region of the state space. If this

derivative is nonnegative, then almost sure stability in

probability of the system is assured. If this derivative is

strictly negative, then almost sure asymptotic stability in

Iprobability is assured. (See Theorems 4.1 and 4.2 of Section

2.2.)I
2. A sufficient condition for exponential stability in mean square of

the system is that the Lyapunov function candidate mentioned above

be bounded above and below by the scaled L 2 norm of the state

vector and that the stochastic time derivative of the LyapunovI function candidate be bounded above by a strictly negative

constant times the L2 norm of the state vector. Furthermore, such

I a Lyapunov candidate is guaranteed to exist if the system is

exponentially stable in mean square. (See Theorems 4.3 and 4.4 of

Section 2.2.)

3. If the system is linear and time-invariant, failures affect only

the input matrix (or the dynamics matrix) in the state equation,

* and the control is a linear state feedback with gain dependent

only on the decision of the FDI process, then a necessary and

I 99



sufficient condition for exponential stability in mean square of

the system is that a set of coupled matrix Riccati equations have

a finite steady state solution. Furthermore, if the system is

exponentially stable in mean square, then it is also almost surely

asymptotically stable in probability. (See Theorem 5.1 of Section

* 2.2.)

The last finding above is parti.ularly significant because it is both

necessary and sufficient and is relatively easy to check in practice.

Section 2.3 demonstrates this by actually applying this result to a simple

fault tulefaut system with various state feedback control strategies.

-- The key finding of the threshold determination study summarized in Section

2.1 is that approximately optimal thresholds for sequential failure

detection tests can be found without numerically evaluating the solution to

a semi-Markov model of the system behavior. In fact, the approximate

optimization is accomplished without even constructing the entire semi-

Markov model. The results for one numerical example presented in Section

2.1 show that the performance of thresholds determined by this relatively

simple procedure can be very good.

1I
I
I
I
I
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Several papers and presentations related to the work reported here were

completed or submitted during or just atter the reporting period. Some of

these papers and presentations reported on work that was accomplished

I primarily under the support of the precedent grants (AFOSR-84-O160 and

AFOSR-88-O131). These include:I
B.K. Walker, N.M. Wereley, R.H. Luppold, & E. Gai, "Effects of

Redundai1cy Management on Reliability Modeling," IEEE Trans. on

Reliability, vol. 38, no. 4, pp. 475-482, October 1989.

N.M. Wereley & B.K. Walker, "Approximate Evaluation of Semi-Markov

Chain Reliability Models," Reliability Engineering and System Safety,

vol. 28, pp. 133-164, 1990.

N.M. Wereley & B.K. Walker, "Approximate Evaluation of GeneralizedI Markov Health Models of Fault Tolerant Aerospace Systems," pp. 1419-

1424 in G. Apostolakis (ed.), Probabilistic Safety Assessment and

Management, Elsevier, New York, 1991.

The following papers and presentations were genetated as a direct result of

this grant:

R. Srichander & B.K. Walker, "Selecting Thresholds for Sequential Fault

Detection Tests," to be presented at IFAC SAFEPROCZSS'91 Conf., Baden-

Baden, Germany, September 1991. (Manuscript appears in Section 2.1.)I
R. Srichander & B.K. Walker, "Stochastic Stability Analysis for

Continuous Time Fault Tolerant Control Systems," Proc. of 1991 American

Control Conf., (Boston), IEEE, New York, pp. 493-501, June 1991.

(Manuscript appears in Section 2.2.)

R. Srichander & B.K. Walker, "Stochastic Stability Analysis for

Continuous Time Fault Tolerant Control Systems," to appear in Intl. J.

of Control, 1992. (Identical to above except for revisions currently

in progress.)
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B.K. Walker & R. Srichander, "The Synthesis and Stability -f a Feedback

Control Law for Continuous Time Fault Tolerant Control Systems," to be

submicted to Intl. J. of Control, 1991. (Draft manuscript appears in

Section 2.3.)

R. Srichander, "Fault Tolerant Control of Continuous Time Ssy'ems,"

Ph.D. thesis, Dept. of Aerospace Eng. & Eng. Mechanics, U. Cincinnati,

Cincinnati, Ohio, July 1990.
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